search for lepton flavor violating decays at belle
play

Search for Lepton Flavor Violating decays at Belle K.Inami (Nagoya - PowerPoint PPT Presentation

Belle Belle Search for Lepton Flavor Violating decays at Belle K.Inami (Nagoya univ.) 2010/2/23 KEKB and Belle KEKB: e + (3.5 GeV) e (8GeV) ( )~0.9nb, (bb)~1.1nb A B factory is also a factory! Integrated luminosity:


  1. Belle Belle Search for Lepton Flavor Violating τ decays at Belle K.Inami (Nagoya univ.) 2010/2/23

  2. KEKB and Belle KEKB: e + (3.5 GeV) e ‐ (8GeV) σ ( ττ )~0.9nb, σ (bb)~1.1nb A B ‐ factory is also a τ ‐ factory! Integrated luminosity: >1000 fb ‐ 1 ⇒ >9x10 8 τ ‐ pairs (6~8x10 8 for this analysis) Belle Detector: Good track reconstruction and particle identifications Lepton efficiency:90% Fake rate : O(0.1) % for e O(1)% for μ 2 2

  3. Lepton Flavor Violation Lepton flavor violation (LFV) in charged lepton sector Many extensions of the SM predict LFV decays. Their branching fractions are enhanced as high as current experimental sensitivity ⇒ Observation of LFV is a clear signature of New Physics (NP) Tau lepton : the heaviest charged lepton ‐ Opens many possible LFV decay modes which depend on NP models K0 K0 3 R ‐ parity violation Higgs ‐ mediation LFV

  4. Event Selection 5 ‐ 1 (3 ‐ 1) prong events for lKsKs (lKs and 3leptons) Signal side: µ ‐ π + π − Select events with low multiplicity and separate two sides using thrust π + ‐ Signal (charged tracks from LFV) Ks ‐ Tag (generic 1 ‐ prong decay) π − τ ‐ Ks e ‐ e+ τ + Reduce background events using PID, kinematical information optimize the event selection ν Tag ‐ side: for each mode separately Generic 1 ‐ prong decay (Br( τ � 1 ‐ prong+ ν )~85%) 4

  5. Analysis method Signal Extraction using Signal side: After event particles in signal side selection µ ‐ π + π − − 2 2 M E p = inv signal signal ∆ = − CM CM E E E signal beam π + Ks Signal region : π − Signal MC τ − 90% elliptical region Ks including signal MC e ‐ e+ τ + ∆ E~ 0 GeV Blind analysis ⇒ Blind signal region M inv ~ τ mass Estimate number of BG using sideband data 5

  6. Optimization of event selection To find the LFV signature we optimize the selection criteria to obtain a good sensitivity for the signal discovery, not for a lower UL. Number of observed event, N 99 obs. To state 99% C.L. evidence which we need for 99% CL evidence, as a function of Expected of BG, N BG ― Need 2events for N BG ~0.1 ― Need 4events for N BG ~0.5 � Diff. of effective efficiency is 2. 4 0.5 Unless the efficiency drops significantly, 2 we set the criteria to reduce N BG as 0.1 much as possible. 6

  7. Recent analysis Simple • τ � lll Dominant BG µ : ττ and qq with π mis-ID • τ � lK s e: QED processes • τ � lf 0 Difficulty of reducing the BG • τ � lhh’ • τ � l γ Hard – BG reduction with • Particle ID, Invariant mass cut – Optimize for each final state individually • Introduce intelligent variables (likelihood, neural net etc.) 7

  8. τ � 3leptons [EPS2009,Preliminary] • Data: 782fb ‐ 1 – Prev.: 543fb ‐ 1 • No event is found in the signal region. • Remaining BG; Bhabha e + e ‐ � e + e ‐ µ + µ ‐ ε (%) σ syst (%) • B<(1.5 ‐ 2.7)x10 ‐ 8 EXP UL (x10 ‐ 8 ) Mode N BG e − e + e − 6.0 0.21+ ‐ 0.15 9.8 2.7 – Improved the UL µ − µ + µ − along with the 7.6 0.13+ ‐ 0.06 7.4 2.1 luminosity from e − µ + µ − 6.1 0.10+ ‐ 0.04 9.5 2.7 previous Belle result µ − e + e − 9.3 0.04+ ‐ 0.04 7.8 1.8 µ − e + µ − 10.1 0.02+ ‐ 0.02 7.6 1.7 8 e − µ + e − 11.5 0.01+ ‐ 0.01 7.7 1.5

  9. τ � lK s and lK s K s • Accessible in R ‐ parity violation [PRD66:054021,2002] • Data: 671fb ‐ 1 • Remaining BG: Fake lepton + real Ks from e + e ‐ � qq • No events in signal region • B( τ � lK 0 s) < (2.3 ‐ 2.6) x 10 ‐ 8 at 90%CL • B( τ � lK 0 sK 0 s) < (7.1 ‐ 8.0)x10 ‐ 8 ⇒ improve in a factor of (31 ‐ 43) from CLEO [PRD66:071101R,2002] 9

  10. τ � lf 0 [PLB672:317,2009] • Accessible level in Higgs mediation [PRD74:035010,2006] • Data: 671fb ‐ 1 • f 0 (980) � π + π − � Mass restriction reduces BG significantly. • Remaining BG: e + e ‐ � qq and e + e ‐ qq • B( τ � lf 0 )xB(f 0 � π + π − ) <(3.2 ‐ 3.4)x10 ‐ 8 f 0 (980) 10

  11. τ � lhh’ arXiv:0908.3156 [hep-ex] • Data: 671fb ‐ 1 • Dominant BG: τ � πππν with mis ‐ ID, e + e ‐ � qq • B<(3.3 ‐ 16)x10 ‐ 8 11

  12. Upper limit of BR for LFV τ decays 10 10 10 10 -8 -7 -6 -5 µ − γ LFV results e − γ l γ • Reach the sensitivity of O(10 ‐ 8 ) µ − π 0 e − π 0 µ − η lP 0 e − η µ − η′ e − η′ µ − K S lK s e − K S e − e + e − 3leptons e − µ + µ − e + µ − µ − µ − e + e − µ + e − e − µ − µ + µ − e − π + π − e + π − π − µ − π + π − µ + π − π − e − π + K − e − π − K + e + π − K − e − K + K − lhh’ e + K − K − µ − π + K − µ − π − K + Belle µ + π − K − µ − K + K − µ + K − K − e − K S K S µ − K S K S e − f 0 lf 0 µ − f 0 e − ρ 0 e − K * – * e − K BaBar e − φ e − ω lV 0 µ − ρ 0 µ − K * – * µ − K µ − φ µ − ω – γ p – π 0 p – π − CLEO Λ Λπ − – K − Λ Λ K − 12

  13. Effect to physics models • Experimental results have already ruled out some parts of the parameter space. – Exclude large tan β , small SUSY/Higgs mass τ � µγ τ � µµµ reference SM+ ν mixing Undetectable PRD45(1980)1908, EPJ C8(1999)513 10 -40 10 -14 SM + heavy Maj ν R PRD 66(2002)034008 10 -9 10 -10 PLB 547(2002)252 Non-universal Z’ 10 -9 10 -8 PRD 68(2003)033012 SUSY SO(10) 10 -8 10 -10 mSUGRA+seesaw PRD 66(2002)115013 10 -7 10 -9 SUSY Higgs PLB 566(2003)217 10 -10 10 -7 – Accessing other models and other parameter space 13

  14. Future prospects • In super B ‐ factory, N τ will be >10 10 . UL of BR -6 • Sensitivity depends on 10 CLEO BG level. τ→µγ – Recent improvement of τ→µη the analysis τ→µµµ -7 10 (BG understanding, intelligent selection) B factories � Improve achievable (Belle, BaBar) -8 sensitivity 10 • B( τ � µµµ )~O(10 ‐ 10 ) Old estimation New estimation at 50ab ‐ 1 Super B factory -9 • Improvement of BG 10 reduction is important. – Beam BG -3 -2 -1 10 10 10 1 10 – Resolution Luminosity (ab -1 ) 14

  15. Summary • Search for LFV τ decays using ~10 9 τ decays – 48 modes are investigated. • No evidence is observed yet. • Upper limits on branching ratio around O(10 ‐ 8 ) – B( τ � µµµ )<2.1x10 ‐ 8 , B( τ � µ K s )<2.3x10 ‐ 8 , etc. – Exploring some new ‐ physics parameters space. – Optimization for BG reduction is important. • Plan – Finalize LFV search with full data set – Hadronic decay • Decay structure for hadronic decay with Kaon – Rare decay, CPV decay, EDM etc. 15

  16. 16

  17. Luminosity Skew sextupole Peak Luminosity 2.1x10 34 cm ‐ 2 s ‐ 1 ⇒ World record!!! Integrated luminosity: >1000 fb ‐ 1 ⇒ >9x10 8 τ ‐ pairs (6~8x10 8 for this analysis) [/nb/s] 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend