flavor violating higgs decays
play

Flavor Violating Higgs Decays Joachim Kopp Galileo Galilei - PowerPoint PPT Presentation

Flavor Violating Higgs Decays Joachim Kopp Galileo Galilei Institute November 26, 2012 Based on work done in collaboration with Roni Harnik and Jure Zupan arXiv:1209.1397 Joachim Kopp Flavor Violating Higgs Decays 1 Outline Flavor mixing


  1. Flavor Violating Higgs Decays Joachim Kopp Galileo Galilei Institute November 26, 2012 Based on work done in collaboration with Roni Harnik and Jure Zupan arXiv:1209.1397 Joachim Kopp Flavor Violating Higgs Decays 1

  2. Outline Flavor mixing in the Higgs sector 1 Couplings to leptons 2 Couplings to quarks 3 Flavor-violating Higgs decays at the LHC 4 Summary 5 Joachim Kopp Flavor Violating Higgs Decays 2

  3. Flavor Mixing in the Higgs Sector

  4. Motivation Scenario 1: Several sources of EW symmetry breaking If fermion masses have more than one origin, they do not need to be aligned with the Yukawa couplings Simplest example: Type III 2-Higgs-Doublet Model R H ( 1 ) − Y ( 2 ) R H ( 2 ) + h . c . L Y ⊃ − Y ( 1 ) L i e j ¯ ¯ L i e j ij ij ij ¯ L f j e i L e i R − Y eff f i → − m i ¯ − R h + couplings to heavier Higgs bosons + h . c . (h = Lightest neutral Higgs boson, m h ∼ 125 GeV) Assume heavy Higgs boson are decoupled. see for instance Davidson Greiner, arXiv:1001.0434 Joachim Kopp Flavor Violating Higgs Decays 4

  5. Motivation (2) Scenario 2: Extra Higgs couplings Assume existence of heavy new particles, which induce effective operators of the form λ ′ Λ 2 (¯ ij f i L f j R ) H ( H † H ) + h . c . + · · · , ∆ L Y = − → after EWSB, new (but misaligned) contributions to mass matrices and Yukawa couplings Effective Lagrangian is again ij ¯ L f j e i L e i R − Y eff f i L Y ⊃ − m i ¯ R h + h . c . see for instance Giudice Lebedev, arXiv:0804.1753 Joachim Kopp Flavor Violating Higgs Decays 5

  6. Effective Yukawa Lagrangfian Effective Yukawa Lagrangian R ) h a + h . c . + · · · L Y = − m i ¯ ij (¯ L f j f i L f i R − Y a f i Previously studied by many authors: Bjorken Weinberg, PRL 38 (1977) 622 McWilliams Li, Nucl. Phys. B 179 (1981) 62 Shanker, Nucl. Phys. B 206 (1982) 253 Barr Zee, PRL 65 (1990) 21 Babu Nandi, hep-ph/9907213 Diaz-Cruz Toscano, hep-ph/9910233 Han Marfatia, hep-ph/0008141 Kanemura Ota Tsumura, hep-ph/0505191 Blanke Buras Duling Gori Weiler, arXiv:0809.1073 Casagrande Goertz Haisch Neubert Pfoh, arXiv:0807.4937 Giudice Lebedev, arXiv:0804.1753 Aguilar-Saavedra, arXiv:0904.2387 Albrecht Blanke Buras Duling Gemmler, arXiv:0903.2415 Buras Duling Gori, arXiv:0905.2318 Azatov Toharia Zhu, arXiv:0906.1990 Agashe Contino, arXiv:0906.1542 Davidson Greiner, arXiv:1001.0434 Goudelis Lebedev Park, arXiv:1111.1715 Blankenburg Ellis Isidori, arXiv:1202.5704 Arhrib Cheng Kong, arXiv:1208.4669 McKeen Pospelov Ritz, arXiv:1208.4597 . . . Joachim Kopp Flavor Violating Higgs Decays 6

  7. Effective Yukawa Lagrangfian Effective Yukawa Lagrangian R ) h a + h . c . + · · · L Y = − m i ¯ ij (¯ L f j f i L f i R − Y a f i New in this talk: Comprehensive list of up-to-date constraints (including subdominant ones) Omit approximations where feasible First LHC limits Strategy for future LHC searches Joachim Kopp Flavor Violating Higgs Decays 6

  8. Couplings to Leptons

  9. Low-energy constraints on LFV in the Higgs sector h µ µ − e − Y ∗ µµ P L + Y µµ P R τ τ Y ∗ eµ P L + Y µe P R µ µ τ h µ Y ∗ Y ∗ µτ P L + Y τµ P R τµ P L + Y µτ P R Y ∗ τµ P L + Y µτ P R h µ γ g − 2, EDMs τ → 3 µ , µ ee , etc. Y ∗ eµ P L + Y µe P R µ + e + µ µ τ h γ, Z h M – ¯ M oscillations t t τ τ τ µ Y ∗ ττ P L + Y ττ P R Y ∗ τµ P L + Y µτ P R γ γ µ Y ∗ µe P L + Y eµ P R e µ µ τ µ τ µ h h γ, Z h γ, Z W W W W N N γ γ µ – e conversion τ → µγ , µ → e γ , etc. Joachim Kopp Flavor Violating Higgs Decays 8

  10. Constraints on h → µ e 10 1 � g � g � 2 � 10 0 2 � Μ � 3e � e e � f o E r M � M I D 10 � 1 m M � Y Μ e e Y e Μ E 10 � 2 D � M e � 0 f � Y Μ e � o 10 � 3 r � Y Μ e R e � Y e Μ Y Μ e BR � h �Μ e � � 0.99 � Y e Μ 10 � 4 � m e � Μ � e conv. � m Μ 0 � 10 � 5 v 2 Μ � e Γ 10 � 6 10 � 4 10 � 9 10 � 8 10 � 7 10 � 6 10 � 5 10 � 3 10 � 2 10 � 1 0.5 10 � 7 10 � 7 10 � 6 10 � 5 10 � 4 10 � 3 10 � 2 10 � 1 10 0 10 1 � Y e Μ � Assumption here: see also: Blankenburg Ellis Isidori, arXiv:1202.5704 Diagonal Yukawa coupling unchanged Goudelis Lebedev Park, arXiv:1111.1715 from their SM values. Joachim Kopp Flavor Violating Higgs Decays 9

  11. Constraints on h → τµ and h → τ e 0 � � M Μ Τ Τ � e ΜΜ 10 0 Y Μ D 10 0 Τ � 3 Μ Μ E Y Τ � � � m � g g I � � 2 � � Μ 2 � 2 � Μ � e � 10 � 1 f e 2 o g r � � � g 10 � 1 I E m � D � M Y Τ e Y 10 � 2 e � Y ΤΜ � � Y Τ e � e Τ � � 0 BR � h � Τ e � � 0.99 BR � h � ΤΜ � � 0.99 10 � 2 � � Y Y 10 � 3 Τ � ΜΓ Τ e Τ E Y Μ Y D e Μ M Τ � Τ � e Γ Τ � � � m m e � e m Μ m 10 � 4 R e Τ � � Τ � Y v 10 � 3 v 2 2 10 � 6 10 � 2 10 � 2 10 � 5 Τ 10 � 3 10 � 1 10 � 3 10 � 1 e Y 0.75 e 0.5 0.5 Τ � � 10 � 5 0 10 � 3 10 � 2 10 0 10 � 5 10 � 4 10 � 3 10 � 2 10 0 10 � 1 10 � 1 � Y ΜΤ � � Y e Τ � Substantial flavor violation ( BR ( h → τµ, τ e ) ∼ 0 . 01) perfectly viable. Assumption here: see also: Blankenburg Ellis Isidori, arXiv:1202.5704 Diagonal Yukawa coupling unchanged Goudelis Lebedev Park, arXiv:1111.1715 Davidson Greiner, arXiv:1001.0434 from their SM values. Joachim Kopp Flavor Violating Higgs Decays 10

  12. Couplings to Quarks

  13. Constraints on Higgs couplings to light quarks Tight constraints from neutral meson oscillations b d c u Y ∗ bd P L + Y db P R Y ∗ ct P L + Y tc P R Y ∗ tu P L + Y ut P R h h t t h Y ∗ bd P L + Y db P R u Y ∗ tu P L + Y ut P R Y ∗ ct P L + Y tc P R c ¯ ¯ ¯ ¯ d b Joachim Kopp Flavor Violating Higgs Decays 12

  14. Constraints on Higgs couplings to light quarks Tight constraints from neutral meson oscillations Work in Effective Field Theory: b R d L ) 2 + ˜ b L d R ) 2 + C db 2 (¯ 2 (¯ 4 (¯ b L d R )(¯ H eff = C db C db b R d L ) + . . . Wilson coefficients constrained in UTfit (Bona et al.), arXiv:0707.0636 see also Blankenburg Ellis Isidori, arXiv:1202.5704 Technique Coupling Constraint | Y uc | 2 , | Y cu | 2 < 5 . 0 × 10 − 9 D 0 oscillations < 7 . 5 × 10 − 10 | Y uc Y cu | | Y db | 2 , | Y bd | 2 < 2 . 3 × 10 − 8 B 0 d oscillations < 3 . 3 × 10 − 9 | Y db Y bd | | Y sb | 2 , | Y bs | 2 < 1 . 8 × 10 − 6 B 0 s oscillations < 2 . 5 × 10 − 7 | Y sb Y bs | ℜ ( Y 2 ds ) , ℜ ( Y 2 [ − 5 . 9 . . . 5 . 6 ] × 10 − 10 sd ) ℑ ( Y 2 ds ) , ℑ ( Y 2 [ − 2 . 9 . . . 1 . 6 ] × 10 − 12 sd ) K 0 oscillations [ − 5 . 6 . . . 5 . 6 ] × 10 − 11 ℜ ( Y ∗ ds Y sd ) [ − 1 . 4 . . . 2 . 8 ] × 10 − 13 ℑ ( Y ∗ ds Y sd ) Joachim Kopp Flavor Violating Higgs Decays 12

  15. Couplings involving top quarks Constraints from Single top production 0.5 10 1 BR � h � t � q � h 10 � 1 BR � t � hq � t t q single top bound on � Y ut � , � Y tu � 0.5 single top bound on � Y ct � , � Y tc � t � Y tq � � q � c, u � Y ∗ tt P L + Y tt P R Y ∗ tq P L + Y qt P R 10 � 2 10 0 t � hq lim it � Craig et al. � 10 � 1 10 � 3 g 10 � 2 CDF 0812.3400, DØ 1006.3575 10 � 4 ATLAS 1203.0529 10 � 1 10 � 3 t → hq 10 � 5 Craig et al. 1207.6794 10 � 4 based on CMS multilepton search 10 � 2 1204.5341 10 � 2 10 � 1 10 0 10 1 Not sensitive � Y qt � � q � c, u � t → Zq CMS 1208.0957 Joachim Kopp Flavor Violating Higgs Decays 13

  16. Flavor-Violating Higgs Decays at the Large Hadron Collider

  17. h → τµ and h → τ e at the LHC Basic idea: based on ATLAS, arXiv:1206.5971 25 h → τℓ has the same final state ATLAS 4.7 fb � 1 as h → ττ ℓ 20 ATLAS MC (but is enhanced by 1 / BR ( τ → ℓ ) ) Events � 10 GeV ATLAS data � � Recast h → ττ search 15 5 � H � Τ � Τ � here: ATLAS, arXiv:1206.5971 5 � H � Τ � Μ 10 We consider only 2-lepton 2 � � Y ΤΜ 2 � 1 � 2 � m Τ � � Y ΜΤ v final states 5 Use VBF cuts � � � � (much lower BG than gg fusion) � � 0 0 100 200 300 400 see however ΤΤ collinear mass m ΤΤ � GeV � Davidson Verdier, arXiv:1211.1248 Joachim Kopp Flavor Violating Higgs Decays 15

  18. h → τµ and h → τ e at the LHC Most important cuts based on ATLAS, arXiv:1206.5971 25 2 forward jets ( p T , j 1 > 40 GeV, ATLAS 4.7 fb � 1 p T , j 2 > 25 GeV, | ∆ η | > 3 . 0, 20 m inv j 1 , j 2 > 350 GeV) ATLAS MC Events � 10 GeV ATLAS data no hard jet activity in between � � 15 5 � H � Τ � Τ � no b tags 5 � H � Τ � Μ 2 opposite sign leptons ℓ 1 , ℓ 2 with 10 2 � � Y ΤΜ 2 � 1 � 2 � m Τ � � Y ΜΤ v p T ,ℓ � 10–20 GeV (depending on 5 flavors) � τ momentum fraction x carried by � � � � � 0 ℓ 1 , ℓ 2 satisfies 0 . 1 < x 1 , 2 < 1 . 0 0 100 200 300 400 ΤΤ collinear mass m ΤΤ � GeV � (computed in collinear approximation) 30 GeV < m ℓℓ < 75 (100) GeV for same (opposite) flavor leptons / E T > 20 (40) GeV for same (opposite) flavor leptons Joachim Kopp Flavor Violating Higgs Decays 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend