constraints on higgs fcnc couplings from precision
play

Constraints on Higgs FCNC Couplings from Precision Measurement of B - PowerPoint PPT Presentation

Constraints on Higgs FCNC Couplings from Precision Measurement of B s + Decay Xing-Bo Yuan NCTS arXiv: 1703.06289, Cheng-Wei Chiang, Xiao-Gang He, Fang Ye, XY Joint Working Group: Electroweak/Flavor and Precision, WIN2017 23 JUNE


  1. Constraints on Higgs FCNC Couplings from Precision Measurement of B s → µ + µ − Decay Xing-Bo Yuan NCTS arXiv: 1703.06289, Cheng-Wei Chiang, Xiao-Gang He, Fang Ye, XY Joint Working Group: Electroweak/Flavor and Precision, WIN2017 23 JUNE 2017

  2. Higgs Discovery -1 -1 CMS s = 7 TeV, L = 5.1 fb s = 8 TeV, L = 5.3 fb 1 Local p-value σ 1 σ 2 -2 10 σ 3 -4 10 σ 4 -6 10 σ 5 -8 10 Combined obs. Combined obs. LHC Run I Exp. for SM H Exp. for SM H σ 6 → → γ γ γ γ H H → → -10 H H ZZ ZZ 10 ◮ mass: m h = 125 GeV → → � H H WW WW → → τ τ τ τ H H → → σ H H bb bb 7 -12 10 ◮ spin 110 115 120 125 130 135 140 145 � m (GeV) H ◮ parity � ◮ Yukawa coupling 0 � Local p ATLAS 2011 - 2012 Obs. " -1 s = 7 TeV: Ldt = 4.6-4.8 fb ◮ gauge coupling Exp. � " -1 s = 8 TeV: Ldt = 5.8-5.9 fb ± 1 ! 1 0 ! ◮ self coupling ? -1 1 10 ! 2 ! -2 10 10 -3 3 ! LHC Run II/HL 10 -4 4 ! -5 10 -6 10 5 ! 10 -7 -8 10 -9 10 6 ! -10 10 -11 10 110 115 120 125 130 135 140 145 150 m [GeV] H 2 / 19

  3. Higgs After the Discovery Hierarchy Problem Vacuum Stability 180 10 7 10 10 Instability Instability Meta � stability Pole top mass M t in GeV t c 175 16 π 2 Λ 2 + . . . = 1,2,3 Σ 170 fine-tuning 10 12 Stability c 16 π 2 Λ 2 = 125 GeV 2 m 2 h, 0 + 165 115 120 125 130 135 Higgs mass M h in GeV � 2 + (2 m 2 Z Z µ Z µ ) h f i f i h µ W − µ + m 2 v − m i ¯ ∆ L H =+ µ 2 Φ † Φ − λ Φ † Φ W W + � v + h · X NP − 1 f i ( λ ij + iγ 5 ¯ ¯ √ λ ij ) f j h + . . . 2 Many Parameters u c t ν 3 s d b ν 2 e µ τ ν 1 µ eV meV eV keV MeV GeV TeV 3 / 19

  4. Higgs FCNC: exp µ e τ e + e − collider e B < 0 . 035% B < 0 . 61% ◭ direct search µ < 2 . 8 µ B < 0 . 25% µ = 1 . 1 ± 0 . 2 τ � indirect study u c t McWilliams, Li 1981 B < 0 . 55% u Shanker 1982 Barr, Zee 1990 c Kanemura, Ota, Tsumura 2006 B < 0 . 40% Davidson, Grenier 2010 Golowich et al 2011 µ tth = 2 . 3 +0 . 7 t − 0 . 6 Buras, Girrbach 2012 Blankenburg, Ellis, Isidori 2012 s d b Harnik, Kopp, Zupan 2013 Gorbahn, Haisch 2014 d Celis, Cirigliano, Passemar 2014 . . . . . . s µ = 0 . 70 +0 . 29 b − 0 . 27 4 / 19

  5. Higgs FCNC in EFT ◮ Effective Field Theory c i � Λ 2 O d =6 L full = L SM + + . . . i i ◮ Dim-4 operator in the SM ( ¯ ( ¯ Q L ˜ ( ¯ Q L HY d d R ) , HY u u R ) , Q L HY e e R ) , ◮ Dim-6 operator in the EFT Grzadkowski et al., 2010, Harnik, Kopp, Zupan, 2013 O uH = ( H † H )( ¯ Q L HC dH d R ) , O dH = ( H † H )( ¯ Q L ˜ HC uH u R ) , O eH = ( H † H )( ¯ Q L HC eH e R ) , ◮ Yukawa interaction f R − v 2 � � � � 1 + h f L Y f v 1 + 3 h f L C fH v ¯ ¯ ∆ L = − f R + h.c. √ √ 2Λ 2 v v 2 2 ◮ Yukawa interaction in mass eigenstate Y ij = Y ∗ ji , ¯ Y ij = ¯ Y ∗ ji ∆ L = − 1 f i ( Y ij + i ¯ ¯ √ Y ij γ 5 ) f j h, 2 5 / 19

  6. Constraints and Predictions Constraints: µ µ µ µ µ µ µ µ Z Z ν µ ◮ B s → µ + µ − W W W W t t h t s t b s W s s b b b s b u, c, t s b ◮ B s − ¯ B s W − W + ¯ h ¯ s b ¯ s ¯ b u, c, t τ − τ − h h ◮ h → ττ τ + τ + µ − h ◮ h → µτ τ + Predictions: B ( B s → µτ ) , B ( B s → ττ ) , ... 6 / 19

  7. B s → µ + µ − decay: SM and exp theoretical progress: ◮ B ( B s → µ + µ − ) SM = � � × 10 − 9 3 . 44 ± 0 . 19 De Bruyn et al 2012 ◮ B ( B s → µ + µ − ) avg = � � × 10 − 9 3 . 0 ± 0 . 5 Bobeth et al 2013 B ( B s → µ + µ − ) LHCb17 = � 3 . 0 ± 0 . 6 +0 . 3 � × 10 − 9 − 0 . 2 B ( B s → µ + µ − ) CMS13 = 3 . 0 +1 . 0 × 10 − 9 � � recent study: − 0 . 9 Altmannshofer et al 2017 Fleischer et al 2017 f B s B ( B s → µ + µ − ) × 10 +9 input: ( | V us | , | V ub | , | V cb | , γ ) N f = 2 + 1 + 1 3.54 3.31 3.00 B ∝ | V ∗ tb V ts | 2 f 2 B s N f = 2 + 1 3.68 3.44 3.11 FLAG [2016] HPQCD [2013] unit V cb , V ub N f = 2 + 1 N f = 2 + 1 + 1 avg. incl. excl. f B s 228 . 4 (3 . 7) 224 (5) MeV f B d 192 . 0 (4 . 3) 186 (4) MeV | V ∗ | V ∗ | V ub | | V cb | tb V ts | tb V td | unit 10 − 3 sl. incl. 4 . 45 ± 0 . 18 ± 0 . 31 42 . 42 ± 0 . 44 ± 0 . 74 41 . 6 ± 0 . 8 9 . 1 ± 0 . 5 10 − 3 sl. avg. 3 . 98 ± 0 . 08 ± 0 . 22 41 . 00 ± 0 . 33 ± 0 . 74 40 . 2 ± 0 . 8 8 . 8 ± 0 . 4 10 − 3 sl. excl. 3 . 72 ± 0 . 09 ± 0 . 22 38 . 99 ± 0 . 49 ± 1 . 17 38 . 2 ± 1 . 2 8 . 3 ± 0 . 4 7 / 19

  8. B s → µ + µ − decay: theory µ µ µ µ µ µ µ µ Z Z ν µ W W W W t t h ◮ Effective Hamiltonian t b s t W b s b s b s H eff = − G F α e V tb V ∗ � � √ C A O A + C S O S + C P O P + h.c. ts πs 2 2 W ◮ Effective operator O S = m b m ℓ O P = m b m ℓ � �� µγ µ γ 5 µ � � �� � � �� � O A = qγ µ P L b ¯ ¯ , qP R b ¯ µµ ¯ , qP R b ¯ µγ 5 µ ¯ , m 2 m 2 W W S = m b m ℓ P = m b m ℓ O ′ � �� � O ′ � �� � qP L b ¯ µµ ¯ , ¯ qP L b µγ 5 µ ¯ . m 2 m 2 W W ◮ Branching ratio loop suppression; helicity suppression � B ( B q → ℓ + ℓ − ) = τ B q G 4 F m 4 1 − 4 m 2 | P | 2 + | S | 2 � W | V tb V ∗ tq | 2 f 2 B q M B q m 2 ℓ � , ℓ m 2 8 π 5 B q m 2 � m b � B q ( C P − C ′ P ≡ C A + P ) , 2 m 2 m b + m q W � m 2 1 − 4 m 2 � m b � B q ℓ ( C S − C ′ S ≡ S ) . m 2 2 m 2 m b + m q B q W ◮ Corrections from B s − ¯ B s mixing De Bruyn et al., 2012; Fleischer 2012 A ∆Γ = | P | 2 cos 2 ϕ P − | S | 2 cos 2 ϕ S � 1 + A ∆Γ y s � B ( B s → ℓ + ℓ − ) = B ( B s → ℓ + ℓ − ) , | P | 2 + | S | 2 1 − y 2 s B s → µ + µ − can provide excellent probe for the Higgs FCNC. 8 / 19

  9. B s → µ + µ − decay: Higgs FCNC effects µ µ µ µ µ µ µ µ Z Z ν µ W W W W t t h ◮ Effective Hamiltonian t b s t W b s b s b s H eff = − G F α e V tb V ∗ � � √ C A O A + C S O S + C P O P + h.c. ts πs 2 2 W ◮ Effective operator O S = m b m ℓ O P = m b m ℓ � �� µγ µ γ 5 µ � � �� � � �� � O A = qγ µ P L b ¯ ¯ , qP R b ¯ µµ ¯ , ¯ qP R b µγ 5 µ ¯ , m 2 m 2 W W S = m b m ℓ P = m b m ℓ O ′ � �� � O ′ � �� � qP L b ¯ ¯ µµ , ¯ qP L b µγ 5 µ ¯ . m 2 m 2 W W ◮ Branching ratio loop suppression; helicity suppression � B ( B q → ℓ + ℓ − ) = τ B q G 4 F m 4 1 − 4 m 2 | P | 2 + | S | 2 � W | V tb V ∗ tq | 2 f 2 B q M B q m 2 ℓ � , ℓ m 2 8 π 5 B q m 2 � m b � B q ( C P − C ′ P ≡ C A + P ) , 2 m 2 m b + m q W � m 2 1 − 4 m 2 � m b � B q ℓ ( C S − C ′ S ≡ S ) . m 2 2 m 2 m b + m q B q W B depends on ( ¯ Y sb Y µµ , ¯ Y sb ¯ ◮ Contributions from the Higgs FCNC Y µµ ) π 2 1 1 C NP = κ ( Y sb + i ¯ C NP = iκ ( Y sb + i ¯ Y sb ) ¯ Y sb ) Y µµ , Y µµ , κ = . S P 2 G 2 V tb V ∗ m b m µ m 2 F ts h C ′ NP = κ ( Y sb − i ¯ C ′ NP = iκ ( Y sb − i ¯ Y sb ) ¯ Y sb ) Y µµ , Y µµ , S P 9 / 19

  10. Bounds from B s → µ + µ − ◮ 95% CL bound Complex Y � 2 + � 2 < 1 . 26 3 � 5 . 6 × 10 5 ¯ � 1 − 6 . 0 × 10 5 ¯ Y sb ¯ � � � � 0 . 66 < Y sb Y µµ Y µµ Y sb Y ΜΜ � 10 � 6 � 2 ◮ dark region: 95% CL allowed Real Y 1 ◮ black: exp central value ◮ dashed: B exp / B theo = 1 . 1 0 ◮ dot-dashed: B exp / B theo = 0 . 9 � 2 � 1 0 1 2 Y sb Y ΜΜ � 10 � 6 � ◮ dotted: B exp / B theo = 0 . 7 8 B s �ΜΜ , Y sb � 1.3 � 10 � 4 SM B s �ΜΜ , Y sb � 3.4 � 10 � 4 6 h �ΜΜ ◮ light gray: 95% CL allowed with ¯ Y sb = 1 . 4 × 10 − 4 4 SM Y ΜΜ � Y ΜΜ ◮ dark gray: 95% CL allowed with ¯ Y sb = 3 . 4 × 10 − 4 ◮ blue: µ µµ < 2 . 8 at 95% CL ATLAS Run I + II 2 ◮ | ¯ Y sb | = 3 . 4 × 10 − 4 : maximal value allowed by B s − ¯ B s 0 � 2 � 4 � 2 0 2 4 SM Y ΜΜ � Y ΜΜ 10 / 19

  11. B s − ¯ B s mixing s b u, c, t s b W − W + ◮ Effective Hamiltonian h ¯ ¯ s b ¯ s ¯ b u, c, t H ∆ B =2 = G 2 tb V ts ) 2 � 16 π 2 m 2 F W ( V ∗ C i O i + h.c.. i ◮ Effective operator RGE: Buras et al. 2001 = (¯ b α γ µ P L s α )(¯ = (¯ b α γ µ P L s α )(¯ O VLL b β γ µ P L s β ) , O LR b β γ µ P R s β ) , 1 1 O VRR = (¯ b α γ µ P R s α )(¯ b β γ µ P R s β ) , O LR = (¯ b α P L s α )(¯ b β P R s β ) , 1 2 = (¯ b α P L s α )(¯ = (¯ b α σ µν P L s α )(¯ O SLL b β P L s β ) , O SLL b β σ µν P L s β ) , 1 2 = (¯ b α P R s α )(¯ = (¯ b α σ µν P R s α )(¯ O SRR b β P R s β ) , O SRR b β σ µν P R s β ) . 1 2 ◮ Wilson coefficients from the Higgs FCNC = − 1 C SLL , NP 2 κ ( Y bs − i ¯ Y bs ) 2 , 1 κ = 8 π 2 = − 1 1 1 C SRR , NP 2 κ ( Y bs + i ¯ Y bs ) 2 , tb V ts ) 2 , 1 G 2 m 2 h m 2 ( V ∗ F W bs + ¯ C LR , NP = − κ ( Y 2 Y 2 bs ) , 2 11 / 19

  12. B s − ¯ B s mixing ◮ Mass difference B s |H ∆ B =2 | B s �| = G 2 ∆ m s = 2 |� ¯ tb V ts | 2 � � � C i � ¯ � , 8 π 2 m 2 F W | V ∗ � B s |O i | B s � ◮ SM prediction ∆ m SM = (18 . 64 +2 . 40 − 2 . 27 )ps − 1 s ◮ Exp data ∆ m exp = (17 . 757 ± 0 . 021)ps − 1 s ◮ 95% CL bound complex Y sb + 2 . 1 ¯ � < 1 . 29 � 0 . 7 Y 2 Y 2 × 10 6 � � � 0 . 76 < � 1 − sb 12 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend