constraints on bsm physics through the higgs couplings
play

Constraints on BSM physics through the Higgs couplings J er emie - PowerPoint PPT Presentation

Constraints on BSM physics through the Higgs couplings J er emie Quevillon LPT Orsay Frontiers of Fondamental Physics 2014, Marseille, 17 July 2014 LPT Orsay J er emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model


  1. Constraints on BSM physics through the Higgs couplings J´ er´ emie Quevillon LPT Orsay Frontiers of Fondamental Physics 2014, Marseille, 17 July 2014 LPT Orsay J´ er´ emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model FFP 2014, Marseille, 15 July 2014 1 / 28

  2. The Brout-Englert-Higgs mecanism Crucial problem in particle physics: how to generate particle masses in an SU (2) × U (1) gauge invariant way? � φ + � Take an SU(2)-doublet of scalar fields Φ = , Y Φ = +1, φ 0 with a Lagrangian invariant under SU (2) L × U (1) Y : L S = ( D µ Φ) † D µ Φ − V (Φ), � 2 , ′ Y V (Φ) = µ 2 Φ † Φ + λ � Φ † Φ D µ = ∂ µ − igT a W a µ − ig 2 B µ W a T a are the SU(2) generators & µ are the SU(2) gauge bosons Y is the hypercharge & B µ is the U(1) gauge boson µ 2 > 0: 4 scalar particles & µ 2 < 0: Φ gets a V.E.V. � 0 � � − µ 2 � 0 | Φ | 0 � = with v = = 246 GeV v V( � ) V( � ) √ λ 2 � � 0 ⇒ Φ( x ) = v + H ( x ) √ 2 � � > > 0 0 ⇒ three d.o.f. for M W ± and M Z 2 2 + v � > 0 � < 0 Fermion masses: L Yuk = − f e (¯ e , ¯ ν ) L Φ e R + ... ⇒ one residual scalar boson= the Higgs ( M H = 2 λ v 2 ) [Higgs (1964); Brout, Englert (1964); Hagen,Kibble,Guralnik (1964)] J´ er´ emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model FFP 2014, Marseille, 15 July 2014 2 / 28

  3. The Higgs boson couplings After EWSB, the Higgs boson couples to fermions, gauge bosons and itself as: g Hff = m f v × ( − i ) g HHH = 3 M 2 H × ( − i ) v g HVV = 2 M 2 V × ( ig µν ) v g HHHH = 3 M 2 v 2 × ( − i ) H g HHVV = 2 M 2 V v 2 × ( ig µν ) g Hff ∝ m f : Higgs couples mostly to top and bottom quarks fermion ggH and γγ H couplings arise at one-loop level − → Since v is known, the only free parameter in the SM is M H (or λ ) J´ er´ emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model FFP 2014, Marseille, 15 July 2014 3 / 28

  4. The 4th of July 2012: discovery of a new 125 GeV boson Events / 2 GeV ATLAS -1 -1 CMS s = 7 TeV, L = 5.1 fb s = 8 TeV, L = 5.3 fb Data 3500 S/(S+B) Weighted Events / 1.5 GeV Sig+Bkg Fit (m =126.5 GeV) 3000 H Events / 1.5 GeV Bkg (4th order polynomial) Unweighted 2500 1500 2000 1500 1500 ∫ 1000 -1 s =7 TeV, Ldt=4.8fb 1000 → γ γ ∫ H -1 500 s =8 TeV, Ldt=5.9fb 1000 Events - Bkg 200 120 130 100 110 120 130 140 150 160 m (GeV) 100 γ γ 0 -100 -200 Data 500 100 110 120 130 140 150 160 S+B Fit m [GeV] γ γ B Fit Component 1 σ (stat.) ± σ ATLAS Prelim. Total uncertainty 2 ( sys inc. ) ± σ σ theory ± σ µ m = 125.5 GeV 1 on 0 H σ (theory) 110 120 130 140 150 → γ γ + 0.23 m (GeV) H - 0.22 0.24 γ γ + µ 0.33 = 1.57 + - 0.18 -1 -1 + 0.17 s = 7 TeV, L ≤ 5.1 fb s = 8 TeV, L ≤ 19.6 fb - 0.28 0.12 - + 0.35 Combined → → H ZZ* 4l 0.32 - CMS Preliminary m = 125.7 GeV µ = 0.80 ± 0.14 + 0.20 H µ + 0.40 - 0.13 = 1.44 H → bb (VH tag) p = 0.94 + 0.17 0.35 - - 0.10 SM + 0.21 H → WW* → l ν l ν - 0.21 H → bb (ttH tag) 0.24 + µ 0.32 0.19 = 1.00 + - + 0.16 0.29 H → γ γ (untagged) - - 0.08 Combined + 0.14 - 0.14 H → γ γ , ZZ*, WW* H → γ γ (VBF tag) 0.16 + 0.21 µ = 1.35 + - 0.14 0.13 + - 0.20 0.11 H → γ γ (VH tag) - ± 0.5 → W,Z H b b H → WW (0/1 jet) ± 0.4 µ + 0.7 = 0.2 0.6 <0.1 H → WW (VBF tag) - → τ τ + 0.3 H (8 TeV data only) - 0.3 H → WW (VH tag) + 0.4 0.5 µ = 1.4 + - 0.3 0.2 + - 0.4 0.1 - H → τ τ (0/1 jet) Combined + 0.24 - 0.24 H → b b , τ τ + 0.27 H → τ τ (VBF tag) 0.36 µ = 1.09 + - 0.21 0.08 + - 0.32 - 0.04 H → τ τ (VH tag) + 0.12 Combined 0.12 - H → ZZ (0/1 jet) + 0.14 µ + 0.18 - 0.11 = 1.30 0.10 + 0.17 H → ZZ (2 jets) - - 0.08 -0.5 0 0.5 1 1.5 2 ∫ -1 -4 -2 0 2 4 s = 7 TeV Ldt = 4.6-4.8 fb Best fit / µ σ σ Signal strength ( ) ∫ s = 8 TeV Ldt = 20.3 fb -1 SM J´ er´ emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model FFP 2014, Marseille, 15 July 2014 4 / 28

  5. with Djouadi et al. (2013) Is it a Higgs? Higgs couplings as predicted by Higgs mechanism couplings proportional to masses as expected couplings to WW , ZZ , γγ roughly as expected Is it a spin 0? state decays into γγ ⇒ not spin-1 Ellis et al. (2012) (Landau–Yang th.) is it a spin–2 like graviton? A priori no: c g � = c γ , c V ≫ 35 c γ Is it CP-even? HV µ V µ vs H ǫ µνρσ Z µν Z ρσ ⇒ d Γ( H → ZZ ∗ ) and d Γ( H → ZZ ) -1 CMS s = 7 (8) TeV, L = 5.1 (12.2) fb 3000 dM ∗ d Φ Pseudoexperiments 0+ 0- 2500 ATLAS/CMS: ∼ 3 σ for CP-even Observed 2000 1500 1000 ⇒ It is THE-A Higgs boson! 500 0 -30 -20 -10 0 10 20 30 L L -2ln( / ) - + 0 0 J´ er´ emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model FFP 2014, Marseille, 15 July 2014 5 / 28

  6. Outline 1 Constraints on SUSY models through the Higgs sector 2 Constraints on Dark-Matter models through the Higgs sector J´ er´ emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model FFP 2014, Marseille, 15 July 2014 6 / 28

  7. Motivations for SUSY � Λ d 4 k 1 k 2 ∼ Λ 2 + m 2 The hierarchy problem: why M H ≪ M Pl ? Λ δ m 2 H ∼ loop ln m loop ◮ The fermion 1-loop correction to the Higgs mass: λ 2 � � − Λ 2 + 6 m 2 δ (f) m 2 F F ln Λ f H ⊃ 8 π 2 mF H H ◮ The scalar 1-loop correction to the Higgs mass: s � � �� λ S − Λ 2 + (2 m 2 δ (s) m 2 S − 2 λ S v 2 ) ln Λ H ⊃ 16 π 2 mS H H ◮ SUSY theory with 2 N F = N S and with λ S = − λ 2 F ⇒ the quadratic divergences vanish (remain the logarithmic ones): ⇒ the hierarchy and naturalness problems solved λ 2 � � � � �� if m F = m S ⇒ M H is protected by SUSY δ (f+s) m 2 ( m 2 F − m 2 + 3 m 2 mS S Λ H = S ) ln F ln 4 π 2 mS mF ⇒ SUSY must be broken, m S ≫ m F SM MSSM 60 U � 1 � Y 60 U � 1 � Y 50 50 The gauge coupling unification 40 40 S U � 2 � L � 1 � 1 Α X Α X S U � 2 � L 30 30 S U � 3 � c 20 20 S U � 3 � c A dark matter candidate (relies on R-parity) 10 10 0 0 5 10 15 5 10 15 Q Q Log � � Log � � 1 GeV 1 GeV J´ er´ emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model FFP 2014, Marseille, 15 July 2014 7 / 28

  8. The Minimal Supersymmetric Standard Model Defined by 4 assumptions : (a) Minimal gauge group: the MSSM is based on the group SU ( 3 ) C × SU ( 2 ) L × U ( 1 ) Y , i.e. the SM gauge symmetry. (b) Minimal particle content: gauge bosons + spin 1/2 SUSY partners : ˆ G a , ˆ W a , ˆ B (vector superfileds) quarks and leptons + squarks and sleptons: ˆ Q , ˆ U R , ˆ D R , ˆ L , ˆ E R . (3 gen. of chiral superfields) 2 Higgs doublets + spin 1/2 SUSY partners: ˆ H 1 , ˆ H 2 (c) Minimal Yukawa interactions and R–parity conservation: a discrete symmetry called R –parity is imposed (enforce lepton and baryon number conservation) R p = ( − 1) 2 s +3 B + L ; R p = ± 1 for SM/SUSY particule (d) Minimal set of soft SUSY–breaking terms: � � W a ˜ G a ˜ • Mass for gauginos: −L gino = 1 M 1 ˜ B ˜ � 3 a =1 ˜ � 8 a =1 ˜ B + M 2 W a + M 3 G a + h . c . 2 Q † L † u R i | 2 + m 2 d R i | 2 + m 2 i = gen m 2 ˜ i ˜ Q i + m 2 ˜ i ˜ L i + m 2 d i | ˜ ℓ i | ˜ ℓ R i | 2 • Mass for sfermions: −L sf = � u i | ˜ ˜ ˜ ˜ ˜ ˜ Q i L i H 2 H † H 1 H † • Mass and bilinear for the Higgs: −L Higgs = m 2 2 H 2 + m 2 1 H 1 + B µ ( H 2 · H 1 + h . c . ) � � R i H 2 · ˜ ij ˜ R i H 1 · ˜ ij ˜ R i H 1 · ˜ A u ij Y u u ∗ Q j + A d ij Y d d ∗ Q j + A l ij Y ℓ ℓ ∗ • Trilinear: −L tril . = � ij ˜ L j + h . c . i , j = gen 105 parameters (SSB) + 19 (SM) ⇒ phenomenological analysis complicated Only 22 for the pMSSM: τ R , A τ , A b , A t , tan β, m 2 H 1 , m 2 M 1 , M 2 , M 3 , m ˜ q , m ˜ u R , m ˜ d R , A u , A d , A e , m ˜ l , m ˜ e R , m ˜ Q , m ˜ t R , m ˜ b R , m ˜ L , m ˜ H 2 J´ er´ emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model FFP 2014, Marseille, 15 July 2014 8 / 28

  9. The Higgs sector of the MSSM � H 0 H + � � � 1 2 One needs 2 complex scalar doublets: H 1 = and H 2 = H − H 0 2 1 give masses to respectively d and u fermions in SUSY invariant way cancel the chiral anomalies After EWSB: 3 d.o.f. to make W ± L , Z L ⇒ 5 physical states left out: h , H , A , H ± At tree-level only 2 free parameters tan β, M A : tan 2 α = tan 2 β M 2 A + M 2 � � � h , H = 1 Z ) 2 − 4 M 2 Z cos 2 2 β M 2 M 2 A + M 2 ( M 2 A + M 2 A M 2 Z ∓ , Z M 2 A − M 2 2 Z M 2 H ± = M 2 A + M 2 W Important constraint on the MSSM Higgs boson masses: M h ≤ min ( M A , M Z ) · | cos 2 β | ≤ M Z , M H > max ( M A , M Z ), M H ± > M W M A ≫ M Z : decoupling regime, all Higgses heavy except h: M H ∼ M ± M h ∼ M Z | cos 2 β | ≤ M Z , H ∼ M A , α ∼ π − β ⇒ Inclusion of radiative corrections to M h are essential to explain M h ≈ 125 GeV > M Z J´ er´ emie Quevillon (LPT Orsay) Higgs Physics Beyond the Standard Model FFP 2014, Marseille, 15 July 2014 9 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend