new physics models facing lepton flavor violating higgs
play

New Physics Models Facing Lepton Flavor Violating Higgs Decays Nejc - PowerPoint PPT Presentation

New Physics Models Facing Lepton Flavor Violating Higgs Decays Nejc Ko nik with Ilja Dor ner, Svjetlana Fajfer, Admir Greljo, Jernej F. Kamenik, I. Ni and i Based


  1. ���������� �� ��������� New Physics Models Facing Lepton Flavor Violating Higgs Decays Nejc Ko š nik with Ilja Dor š ner, Svjetlana Fajfer, Admir Greljo, Jernej F. Kamenik, I. Ni š and ž i ć Based on arXiv:1502.07784 ������� �� ����������� ��� �������

  2. Introduction • Hint of huge Lepton Flavor Violation in Higgs decay (null hypothesis 2.4 σ 0 . 84 +0 . 39 � � B ( h → τ µ ) = % [CMS,1502.07400] excluded) − 0 . 37 • Clearly beyond the SM (or SM with Dirac neutrinos) • What kind of NP model could accommodate this result and be consistent with numerous (negative) tests of LFV? branching fraction LFV process < 10 -7 τ → 3 µ τ → µ γ < 10 -13 µN → eN µ → e γ < 10 -5 Z → ` i ` j ≈ 10 -2 h → τ µ 2 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  3. N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  4. Outline Motivation: • Find complementary LFV observables • Identify viable scenarios 1. Constraints on effective Higgs couplings 2. Effective theory approach 3. Extended scalar sector 4. Extended fermionic sector or loop-induced LFV 5. Summary and outlook 4 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  5. 1. Constraints on effective Higgs couplings from h →τμ N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  6. Effective Higgs couplings • General parameterisation of the off-diagonal Yukawa couplings ⇣ ⌘ m i Y ` = − m i � ij ¯ L ` j ¯ L ` j y SM L e ff . ` i ` i = δ ij R − y ij h + . . . + h . c . ij R v m h τ | y τ µ | 2 + | y µ τ | 2 � � B ( h → τ µ ) = h 8 π Γ h y µ τ µ • Assuming New Physics only in h →μτ then CMS result gives 2.0 1.5 ℬ ( � →τμ ) [%] 0 . 84 +0 . 39 � � B ( h → τ µ ) = % − 0 . 37 1.0 CMS 1 σ 0.5 0.0 0.000 0.001 0.002 0.003 0.004 ( � � τμ � � + � � μτ � � ) � / � q | y τ µ | 2 + | y µ τ | 2 < 0 . 0032(0 . 0036) at 68% (95%) C . L . 0 . 0019(0 . 0008) < 6 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  7. Effective Higgs couplings • Testing robustness of the lower bound of LFV Yukawas: allowing for non- SM Higgs production rate and total decay width Γ h → τ µ N h → τ µ ∼ σ h Γ h 7 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  8. Effective Higgs couplings • Testing robustness of the lower bound of LFV Yukawas: allowing for non- SM Higgs production rate and total decay width 7 Γ h → τ µ Higgs data fit N h → τ µ ∼ σ h 6 Γ h 5 4 • Well known Higgs production χ 2 3 • Strong lower bound on Γ h ��� ( ����� ) � ���� � τμ ��������� ���� ( ������ ) � ��� ��������� 2 1 0 0.000 0.002 0.004 0.006 0.008 ( � � τμ � � + � � μτ � � ) � / � q | y τ µ | 2 + | y µ τ | 2 < 0 . 0036(0 . 0047) at 68% (95%) C . L . 0 . 0017(0 . 0007) < Robust lower bound on the LFV Yukawas 8 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  9. 2. Effective theory approach N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  10. Effective Theory Framework • Integrate out heavy Higgses, fermions, scalars. Keep terms up to dim-6: 1 ij ¯ Λ 2 ¯ L i H α E j − λ 0 αβγ L i H α E j ( H † L Y ` = − λ α β H γ ) + h . c . ij Multiple higgses α , v α + x α h + . . . ) T H α = ( h + X X | x α | 2 ∼ 1 / 2 v 2 α ∼ v 2 / 2 α α Dim-6 operator creates mismatch between mass and Yukawa matrices v α + λ 0 αβγ v 2 ✓ ◆ m y ij = m i V † λ α ¯ v � ij + ✏ ij v = V L v α ¯ v β ¯ v γ Λ 2 ¯ R + � 0 αβγ v 2  ✓ x α ◆ ✓ x α ◆� + x β + x γ V † � α ¯ ✏ = V L v α − 1 Λ 2 ¯ v α ¯ v β ¯ v γ − 1 R v α ¯ v α ¯ v β ¯ v γ ¯ vanishing in single ⌘� 1 / 4 ✓ 0 . 84% ◆ ⇣ | V L λ 0 111 V † τ µ + | V L λ 0 111 V † R | 2 R | 2 Λ ' 4 TeV Higgs scenarios µ τ B ( h ! τ µ ) 10 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  11. Naturalness • Naturalness criterium for effective Higgs couplings (to avoid cancellations in the mass matrix) [Cheng,Sher, Phys.Rev. D35, 3484] √ m µ m τ q | y τ µ y µ τ | . = 0 . 0018 [Branco et al,, Phys.Rept. 516, 1] v 0.005 » y tm y mt » > m t m m ê v 2 0.004 0.003 » y mt » CMS h Ætm 0.002 68 % C.L. 0.001 95 % C.L. 0.000 0.000 0.001 0.002 0.003 0.004 0.005 » y tm » 11 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  12. Tau LFV radiative decay • Constraint from τ→μγ [Harnik, Kopp, Zupan, JHEP 1303, 026] [Goudelis, Lebedev, Park, Phys.Lett. B707, 369 ] [ Blankenburg, Ellis, Isidori, Phys.Lett. B712, 386] y τ µ τ µ τ Comparable 1-loop and Barr-Zee contributions y τ µ τ µ τ t 12 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  13. Additional LFV correlations Suppose that h τ e is nonzero. } µ → e γ µN → eN µ τ e h → τ µ h → τ e | y µ τ y τ e | 2 + | y τ µ y e τ | 2 � � B ( µ ! e γ ) ' 185 | y e τ y µ τ | 2 + | y τ e y τ µ | 2 � B ( µ ! e ) Au ' 4 . 67 ⇥ 10 − 4 �  B ( µ → e γ ) �  B ( µ → e ) Au � B ( h → τ µ ) × B ( h → τ e ) = 7 . 95 × 10 − 10 + 3 . 15 × 10 − 4 10 − 13 10 − 13 13 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  14. h →μτ Vs. h → e τ τ→ e γ [ BaBar. PRL104, 021802 (2010)] < 3.3 × 10 -8 0.19 SINDRUM II, μ e conv. on Au < 7 × 10 -13 [ Eur.Phys.J. C47, 337 (2006)] projected Mu2e limit on μ e < 6 × 10 -17 14 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  15. 3. Two Higgs doublet mode (type III) N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  16. Framework ✓ H 0 ◆ ✓ H + ◆ d u [Crivellin et al, PRD,87,094031 (2013)] H d = , H u = H 0 H − u d 1 H 0 sin α + h 0 cos α + iA 0 cos β H 0 � � u = √ 2 1 H 0 cos α − h 0 sin α + iA 0 sin β H 0 � � d = √ 2 u = H + cos β 5 physical scalars: H 1 h, H 0 , H ± , A u = H − sin β H 2 tan 2 α = tan 2 β m 2 A + m 2 tan β = v u Z , , m 2 A − m 2 2 parameters: tan β , m A v d Z m 2 H ± = m 2 A + m 2 m 2 H = m 2 A + m 2 Z − m 2 W h 16 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  17. Flavor couplings • Type-III THDM : no restrictions on the Higgs couplings to fermions • Tree-level Higgs couplings exhibit ➡ Charged and FCN currents in the quark sector (K, D, B meson mixing, rare decays) ➡ Lepton Flavor Violation • Decoupling limit of MSSM y H + y H k fi fi 2 H k ¯ 2 H + ¯ L = ` L,f ` R,i + ⌫ L,f ` R,i + h.c. √ √ m ` i y H k fi = x k � fi − ✏ ` x k d tan � − x k ∗ � � Neutral Higges couplings d fi u v d 3 ✓ m ` i ◆ √ y H ± X sin � V PMNS � ji − ✏ ` Charged Higgs couplings ji tan � = 2 fi fj v d j =1 • LFV parameters are ε lij 17 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  18. h →τμ τ ✏ ` h µ ⌧ ( ⌧ µ ) y µ τ y µ ⌧ ( ⌧ µ ) = (sin ↵ tan � + cos ↵ ) √ 2 µ m h µ ⌧ | 2 + | ✏ ` | ✏ ` (sin ↵ tan � + cos ↵ ) 2 � ⌧ µ | 2 � B ( h → ⌧ µ ) = 16 ⇡ Γ h 0.10 ℬ ( � →τμ )= ���� % 0.08 sin α tan β + cos α ' � 2 m 2 ��� β = �� Z ��� β = � ℓ � � ) � / � m 2 A 0.06 ℓ � � + �ϵ μτ 0.04 Effect decouples for large m A ( �ϵ τμ 0.02 � τ / � 0.00 200 300 400 500 600 700 m A . ( GeV ) 18 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  19. Tau LFV decays H 0 H 0 A 1-loop ~ (LFV Yukawa) * (tiny LFC Yukawa) H + H + k k µ µ τ ν τ τ y ττ y τ µ Dominant Barr-Zee contributions A Barr-Zee ~ (LFV Yukawa) * (loop suppression) [Chang et al, PRD48, 217(1993)] *Missing contributions at 2-loops with H + mediator 19 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  20. LFV correlations m 1 2 o 0 m 0 d 2 . + e o 0 . e 2 d − r 0 e f e [CMS ’14, ATLAS ‘15] . 1 r τ f = τ , τ τ μ τ μ , τ μ , μ ε τ µ ε τ Works up to m A ~ 0.5 TeV 20 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  21. Two Higgs Doublet Model } Correlation with h →τ e decay! µ → e γ µN → eN µ τ e h → τ µ h → τ e | ✏ µ τ ✏ τ e | 2 + | ✏ e τ y τ µ | 2 � B ( µ ! e � ) ' B µ → e γ � ( t β , m A ) , 0 | ✏ e τ ✏ µ τ | 2 + | ✏ τ e ✏ τ µ | 2 � B ( µ ! e ) A u ' B µe � 0 ( t β , m A ) B ( µ → e γ ) ( t β , m A ) + B ( µ → e ) Au B ( h → τ µ ) × B ( h → τ e ) ∼ B µ → e γ B µe 0 ( t β , m A ) 0 21 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  22. h →μτ Vs. h → e τ B ( h → τ e ) < 6 × 10 − 6 (taking central value for h →τμ ) SINDRUM II, μ e conv. on Au < 7 × 10 -13 [ Eur.Phys.J. C47, 337 (2006)] and MEG μ→ e γ <5.7 × 10 -13 [PRL110, 201801 (2013)] 22 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  23. 4. Extended fermionic sector or loop-induced LFV N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend