semidefinite approximations of projections and polynomial
play

Semidefinite Approximations of Projections and Polynomial Images of - PowerPoint PPT Presentation

Semidefinite Approximations of Projections and Polynomial Images of Semialgebraic Sets Victor Magron , CNRS VERIMAG joint work with Didier Henrion and Jean-Bernard Lasserre (LAAS) CompACS Meeting 18 January 2016 Victor Magron SDP


  1. Semidefinite Approximations of Projections and Polynomial Images of Semialgebraic Sets Victor Magron , CNRS VERIMAG joint work with Didier Henrion and Jean-Bernard Lasserre (LAAS) CompACS Meeting 18 January 2016 Victor Magron SDP Approximations of Semialgebraic Set Projections 1 / 30

  2. The Problem Semialgebraic set S : = { x ∈ R n : g 1 ( x ) � 0, . . . , g l ( x ) � 0 } A polynomial map f : R n → R m , x �→ f ( x ) : = ( f 1 ( x ) , . . . , f m ( x )) deg f = d : = max { deg f 1 , . . . , deg f m } F : = f ( S ) ⊆ B , with B ⊂ R m a box or a ball Tractable approximations of F ? Victor Magron SDP Approximations of Semialgebraic Set Projections 2 / 30

  3. The Problem Includes important special cases: 1 m = 1: polynomial optimization F ⊆ [ inf x ∈ S f ( x ) , sup f ( x )] x ∈ S 2 Approximate projections of S when f ( x ) : = ( x 1 , . . . , x m ) 3 Pareto curve approximations � � x ∈ S ( f 1 ( x ) f 2 ( x )) ⊤ For f 1 , f 2 two conflicting criteria: ( P ) min Victor Magron SDP Approximations of Semialgebraic Set Projections 2 / 30

  4. The Problem 3 Pareto curve : set of weakly Edgeworth-Pareto optimal points � � x ∈ S ( f 1 ( x ) f 2 ( x )) ⊤ ( P ) min Definition A point ¯ x ∈ S is called a weakly Edgeworth-Pareto (EP) optimal point of Problem P , when there is no x ∈ S such that f j ( x ) < f j ( ¯ x ) , j = 1, 2. Victor Magron SDP Approximations of Semialgebraic Set Projections 2 / 30

  5. The Problem f 1 : = ( x 1 + x 2 − 7.5 ) 2 /4 + ( − x 1 + x 2 + 3 ) 2 , g 1 : = − ( x 1 − 2 ) 3 /2 − x 2 + 2.5 , g 2 : = − x 1 − x 2 + 8 ( − x 1 + x 2 + 0.65 ) 2 + 3.85 , f 2 : = ( x 1 − 1 ) 2 /4 + ( x 2 − 4 ) 2 /4 . S : = { x ∈ R 2 : g 1 ( x ) � 0, g 2 ( x ) � 0 } . Victor Magron SDP Approximations of Semialgebraic Set Projections 2 / 30

  6. Previous work 1 Exact description of projections with computer algebra Real quantifier elimination (QE) [Tarski 51, Collins 74, Bochnak-Coste-Roy 98] CAD: computational complexity ( sd ) 2 O ( n ) for a finite set of s polynomials Variant QE under radicality, equidimensionality [Hong-Safey 12] Victor Magron SDP Approximations of Semialgebraic Set Projections 3 / 30

  7. Previous work 2 Scalarization methods for computing Pareto curve Numerical discretization schemes: modified Polak method [Pol 76] Iterative Eichfelder-Polak algorithm [Eich 09] Normal-boundary intersection method to find uniform spread of points [Das Dennis 98] Victor Magron SDP Approximations of Semialgebraic Set Projections 3 / 30

  8. Contribution A unifying framework to handle projections, Pareto curve approximations and other applications No discretization is required Victor Magron SDP Approximations of Semialgebraic Set Projections 4 / 30

  9. Contribution A unifying framework to handle projections, Pareto curve approximations and other applications No discretization is required Two different methods: 1 Existential QE: F ⊆ F 1 k : = { y ∈ B : q k ( y ) � 0 } 2 Image measure supports: F ⊆ F 2 k : = { y ∈ B : w k ( y ) � 1 } Victor Magron SDP Approximations of Semialgebraic Set Projections 4 / 30

  10. Contribution A unifying framework to handle projections, Pareto curve approximations and other applications No discretization is required Two different methods: 1 Existential QE: F ⊆ F 1 k : = { y ∈ B : q k ( y ) � 0 } 2 Image measure supports: F ⊆ F 2 k : = { y ∈ B : w k ( y ) � 1 } Strong convergence guarantees Victor Magron SDP Approximations of Semialgebraic Set Projections 4 / 30

  11. Contribution A unifying framework to handle projections, Pareto curve approximations and other applications No discretization is required Two different methods: 1 Existential QE: F ⊆ F 1 k : = { y ∈ B : q k ( y ) � 0 } 2 Image measure supports: F ⊆ F 2 k : = { y ∈ B : w k ( y ) � 1 } Strong convergence guarantees Compute q k or w k with Semidefinite programming (SDP) Victor Magron SDP Approximations of Semialgebraic Set Projections 4 / 30

  12. The Problem m = 1: Polynomial Optimization Method 1: existential quantifier elimination Method 2: support of image measures Application examples Conclusion

  13. Polynomial Optimization Semialgebraic set S : = { x ∈ R n : g 1 ( x ) � 0, . . . , g l ( x ) � 0 } p ∗ : = inf x ∈ S f ( x ) : NP hard Sums of squares Σ [ x ] e.g. x 2 1 − 2 x 1 x 2 + x 2 2 = ( x 1 − x 2 ) 2 � � σ 0 ( x ) + ∑ l Q ( S ) : = j = 1 σ j ( x ) g j ( x ) , with σ j ∈ Σ [ x ] REMEMBER : f ∈ Q ( S ) = ⇒ ∀ x ∈ S , f ( x ) � 0 Victor Magron SDP Approximations of Semialgebraic Set Projections 5 / 30

  14. Problem reformulation Borel σ -algebra B (generated by the open sets of R n ) M + ( S ) : set of probability measures supported on S . If µ ∈ M + ( S ) then 1 µ : B → [ 0, 1 ] , µ ( ∅ ) = 0 2 µ ( � i B i ) = ∑ i µ ( B i ) , for any countable ( B i ) ⊂ B 3 � S µ ( d x ) = 1 supp ( µ ) is the smallest set S such that µ ( R n \ S ) = 0 Victor Magron SDP Approximations of Semialgebraic Set Projections 6 / 30

  15. Problem reformulation � p ∗ = inf x ∈ S f ( x ) = S f d µ inf µ ∈M + ( S ) Victor Magron SDP Approximations of Semialgebraic Set Projections 6 / 30

  16. Primal-dual Moment-SOS [Lasserre 01] Let ( x α ) α ∈ N n be the monomial basis Definition A sequence z has a representing measure on S if there exists a finite measure µ supported on S such that � ∀ α ∈ N n . S x α µ ( d x ) , z α = Victor Magron SDP Approximations of Semialgebraic Set Projections 7 / 30

  17. Primal-dual Moment-SOS [Lasserre 01] M + ( S ) : space of probability measures supported on S Q ( S ) : quadratic module Polynomial Optimization Problems (POP) (Primal) (Dual) � inf S f d µ = sup λ s.t. µ ∈ M + ( S ) s.t. λ ∈ R , f − λ ∈ Q ( S ) Victor Magron SDP Approximations of Semialgebraic Set Projections 7 / 30

  18. Primal-dual Moment-SOS [Lasserre 01] Finite moment sequences z of measures in M + ( S ) Truncated quadratic module Q k ( S ) : = Q ( S ) ∩ R 2 k [ x ] Polynomial Optimization Problems (POP) (Moment) (SOS) ∑ = inf f α z α sup λ α M k − v j ( g j z ) � 0 , λ ∈ R , s.t. 0 � j � l , s.t. z 1 = 1 f − λ ∈ Q k ( S ) Victor Magron SDP Approximations of Semialgebraic Set Projections 7 / 30

  19. Lasserre’s Hierarchy of SDP relaxations ℓ z ( q ) : q ∈ R [ x ] �→ ∑ q α z α α Moment matrix M ( z ) x α , x β : = ℓ z ( x α x β ) = z α + β Localizing matrix M ( g j z ) associated with g j M ( g j z ) x α , x β : = ℓ z ( g j x α x β ) = ∑ γ g j , γ z α + β + γ Victor Magron SDP Approximations of Semialgebraic Set Projections 8 / 30

  20. Lasserre’s Hierarchy of SDP relaxations M k ( z ) contains ( n + 2 k n ) variables, has size ( n + k n ) Truncated matrix of order k = 2 with variables x 1 , x 2 : x 2 x 2 | | 1 x 1 x 2 x 1 x 2 1 2   | | 1 1 z 1,0 z 0,1 z 2,0 z 1,1 z 0,2 − − − − − − − −     x 1 z 1,0 | z 2,0 z 1,1 | z 3,0 z 2,1 z 1,2       x 2 z 0,1 | z 1,1 z 0,2 | z 2,1 z 1,2 z 0,3   M 2 ( z ) =   − − − − − − − − −     x 2 z 2,0 | z 3,0 z 2,1 | z 4,0 z 3,1 z 2,2   1   x 1 x 2  z 1,1 | z 2,1 z 1,2 | z 3,1 z 2,2 z 1,3    x 2 | | z 0,2 z 1,2 z 0,3 z 2,2 z 1,3 z 0,4 2 Victor Magron SDP Approximations of Semialgebraic Set Projections 8 / 30

  21. Lasserre’s Hierarchy of SDP relaxations Consider g 1 ( x ) : = 2 − x 2 1 − x 2 2 . Then v 1 = ⌈ deg g 1 /2 ⌉ = 1. 1 x 1 x 2  2 − z 2,0 − z 0,2 2 z 1,0 − z 3,0 − z 1,2 2 z 0,1 − z 2,1 − z 0,3  1 M 1 ( g 1 z ) = 2 z 1,0 − z 3,0 − z 1,2 2 z 2,0 − z 4,0 − z 2,2 2 z 1,1 − z 3,1 − z 1,3 x 1   x 2 2 z 0,1 − z 2,1 − z 0,3 2 z 1,1 − z 3,1 − z 1,3 2 z 0,2 − z 2,2 − z 0,4 M 1 ( g 1 z )( 3, 3 ) = ℓ ( g 1 ( x ) · x 2 · x 2 ) = ℓ ( 2 x 2 2 − x 2 1 x 2 2 − x 4 2 ) = 2 z 0,2 − z 2,2 − z 0,4 Victor Magron SDP Approximations of Semialgebraic Set Projections 8 / 30

  22. Lasserre’s Hierarchy of SDP relaxations Truncation with moments of order at most 2 k v j : = ⌈ deg g j /2 ⌉ Hierarchy of semidefinite relaxations: S f α x α µ ( d x ) = ∑ α f α z α  � inf z ℓ z ( f ) = ∑ α    M k ( z ) 0 , �  M k − v j ( g j z ) 0 , 1 � j � l , �    = z 1 1 .  Victor Magron SDP Approximations of Semialgebraic Set Projections 8 / 30

  23. Semidefinite Optimization F 0 , F α symmetric real matrices, cost vector c Primal-dual pair of semidefinite programs:  P : inf z ∑ α c α z α    ∑ α F α z α − F 0 � 0 s.t.    ( SDP )  D : sup Y Trace ( F 0 Y )     s.t. Trace ( F α Y ) = c α , Y � 0 .  Freely available SDP solvers ( CSDP , SDPA , S EDUMI ) Victor Magron SDP Approximations of Semialgebraic Set Projections 9 / 30

  24. The Problem m = 1: Polynomial Optimization Method 1: existential quantifier elimination Method 2: support of image measures Application examples Conclusion

  25. Approximation of sets defined with “ ∃ ” Another point of view: F = { y ∈ B : ∃ x ∈ S s.t. f ( x ) = y } , Victor Magron SDP Approximations of Semialgebraic Set Projections 10 / 30

  26. Approximation of sets defined with “ ∃ ” Another point of view: F = { y ∈ B : ∃ x ∈ S s.t. � y − f ( x ) � 2 2 = 0 } , Victor Magron SDP Approximations of Semialgebraic Set Projections 10 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend