probing m theory degrees of freedom
play

PROBING M-THEORY DEGREES OF FREEDOM Bernard de Wit Second 2007 - PowerPoint PPT Presentation

PROBING M-THEORY DEGREES OF FREEDOM Bernard de Wit Second 2007 Workshop Galileo Galilei Institute, Firenze Utrecht University Definition of M-Theory ? 11-dimensional supergravity ? toroidal compactifications thereof with E n ( n ) ( Z ) ?


  1. PROBING M-THEORY DEGREES OF FREEDOM Bernard de Wit Second 2007 Workshop Galileo Galilei Institute, Firenze Utrecht University

  2. Definition of M-Theory ? 11-dimensional supergravity ? toroidal compactifications thereof with E n ( n ) ( Z ) ? + Kaluza-Klein states (1/2-BPS) ? + branes + etcetera ? what about IIB theory ? Matrix theory ? Membrane theory We start from the (effective) field theory perspective with 32 supersymmetries (bottom up approach - unlike work by Englert, Nicolai, West, etc. ) work in progress with Hermann Nicolai and Henning Samtleben

  3. | | | | | | ⎨ ⎩ ⎧ | | | ⎨ ⎩ ⎧ | ↵ D=11 SUGRA 11 - ↵ IIB SUGRA 10 - 9 - ↵ central charges D=9 (2 , 1) ⊕ (1 , 1) massless 8 - states 7 - KK states 6 - 5 - extra KK states 4 - incomplete incomplete

  4. ⎨ ⎧ ⎩ ⎨ ⎧ ⎩ 11D - IIA - IIB PERSPECTIVE IIA momentum KK states + D0 branes KKA (2 , 1) IIB winding strings + D1 branes IIB momentum KK states KKB (1 , 1) IIA winding strings 9D SUGRA contains 2+1 gauge fields central charges Supermembrane ? Schwarz, 1996 Aspinwall, 1996 indication of higher-dimensional origin (without full decompactification) Abou-Zeid, dW, Lüst, Nicolai, 1999-2001

  5. D=11 IIA D=9 IIB SO(1 , 1) ˆ G µ ν G µ ν g µ ν G µ ν 0 ˆ A µ 9 10 C µ 9 B µ G µ 9 − 4 G µ 9 , ˆ ˆ G µ 10 G µ 9 , C µ A α A α 3 µ µ 9 A µ ν 9 , ˆ ˆ A µ ν 10 C µ ν 9 , C µ ν A α A α − 1 µ ν µ ν ˆ A µ νρ C µ νρ A µ νρ A µ νρσ 2 � φ α φ α 0 G 9 10 , ˆ ˆ G 9 9 , ˆ φ , G 9 9 , C 9 G 10 10 exp( σ ) G 9 9 7 M BPS ( q 1 , q 2 , p ) = m KKA e 3 σ / 7 | q α φ α | + m KKB e − 4 σ / 7 | p | m 2 KKA m KKB ∝ T m

  6. more generally: SUPERSYMMETRY ANTI-COMMUTATOR αβ P M + 1 αβ Z MN + 1 5! Γ MNP QR { Q α , ¯ Q β } = Γ M 2 Γ MN Z MNP QR αβ CENTRAL CHARGES (pointlike) 9 SL(2) × SO(1 , 1) SO(2) ( 2 , 1 ) ⊕ ( 1 , 1 ) 8 SL(3) × SL(2) U(2) ( 3 , 2 ) 7 E 4(4) ≡ SL(5) USp(4) 10 6 E 5(5) ≡ SO(5 , 5) USp(4) × USp(4) 16 → ( 4 , 4 ) 5 E 6(6) USp(8) 27 ⊕ 1 4 E 7(7) SU(8) 56 → 28 ⊕ 28 3 E 8(8) SO(16) 120 2 E 9(9) SO(16) 1 ⊕ 120 ⊕ 135 compare to vector fields!

  7. CENTRAL CHARGES (stringlike) 9 SL(2) × SO(1 , 1) 2 8 SL(3) × SL(2) ( 3 , 1 ) 7 SL(5) 5 6 SO(5 , 5) 10 ⊕ 1 → ( 5 , 1 ) ⊕ ( 1 , 5 ) ⊕ ( 1 , 1 ) 5 E 6(6) 27 4 E 7(7) 63 3 E 8(8) 135 2 E 9(9) 135 compare to tensor fields! another perspective ........

  8. GAUGINGS class of deformations of maximal supergravities gauging versus scalar-vector-tensor duality first: 3 space-time dimensions 128 scalars and 128 spinors, but no vectors ! E 8(8) ( R ) obtained by dualizing vectors in order to realize the symmetry solution: introduce 248 vector gauge fields with Chern-Simons terms N − 1 L CS ∝ g ε µ νρ A µ � P A ρ Q � M Θ MN N A ν ∂ ν A ρ 3 g f P Q Θ EMBEDDING TENSOR ‘invisible’ at the level of the toroidal truncation Nicolai, Samtleben, 2000

  9. ☞ ☞ another example: 5 space-time dimensions 42 scalars and 27 vectors, and no tensors ! to realize the symmetry E rigid 6(6) × USp(8) local introduce a local subgroup such as E 6(6) → SO(6) local × SL(2) inconsistent! Günaydin, Romans, Warner, 1986 vectors decompose according to: ( 15 , 1 ) + ( 6 , 2 ) 27 → ↵ charged vector fields must be (re)converted to tensor fields ! gauge group encoded into the α EMBEDDING TENSOR Θ M treated as spurionic order parameter ∈ E 6(6) probes new M-theory degrees of freedom α t α α X M = Θ M Θ M ↵ ↵ gauge group generators generators E 6(6)

  10. The embedding tensor is subject to constraints ! P X P closure: [ X M , X N ] = f MN β Θ N γ f βγ P Θ P β t β N P Θ P α = f MN α = − Θ M α Θ M ↵ P ∈ E 6(6) X MN P X P [ X M , X N ] = − X MN contains the gauge group structure constants, but is P X MN not symmetric in lower indices, unless contracted with the embedding tensor !!!! supersymmetry: α ∈ 351 Θ M 27 × 78 = 27 + 351 + 1728 ( 351 × 351 ) s = 27 + 1728 + 351 ′ + 7722 + 17550 + 34398 (closure) dW, Samtleben, Trigiante, 2005

  11. EMBEDDING TENSORS FOR D = 3,4,5,6,7 7 SL(5) 10 × 24 = 10 + 15 + 40 + 175 6 SO(5 , 5) 16 × 45 = 16 + 144 + 560 5 E 6(6) 27 × 78 = 27 + 351 + 1728 4 E 7(7) 56 × 133 = 56 + 912 + 6480 3 E 8(8) 248 × 248 = 1 + 248 + 3875 + 27000 + 30380 dW, Samtleben, Trigiante, 2002 characterize all possible gaugings group-theoretical classification universal Lagrangians applications in D = 3,4,5,7 space-time dimensions, in D=4, for N = 2,4,8 supergravities in D=3, for N = 1,...,6,8,9,10,12,16 supergravities de Vroome, dW, Herger, Nicolai, Samtleben, Schön, Trigiante, Weidner

  12. digression: consider the representations appearing in ( 27 × 27 ) s = ( 27 + 351 ′ ) P = d I,MN Z P,I invariant tensor(s) d MNI : E 6(6) X ( MN ) � 27 two possible representations can be associated with the new index 351 ′ ′ + 1728 + 7722 27 × ( 27 × 27 ) s = 351 + 27 + 27 + 351 P = d MNQ Z P Q indeed: X ( MN ) ( 27 × 27 ) a = 351 from the closure constraint: Z MN Θ N α = 0 Z MN X N = 0 orthogonality → [ P Z Q ] N = 0 gauge invariant tensor X MN this structure is generic (at least, for the groups of interest) and we will exploit it later !

  13. rather than converting and tensors into vectors and reconverting some of them them when a gauging is switched on, we introduce both vectors and tensors from the start, transforming into the representations and , respectively 27 27 extra gauge invariance ↵ M Λ P A Q µ − g Z MN Ξ µ N δ A M µ = ∂ µ Λ M − g X [ P Q ] Ξ M A µ M = ∂ µ A ν M + g X [ NP ] not fully covariant M − ∂ ν A µ N A ν P F µ ν M + g Z MN B µ ν N M = F µ ν introduce fully covariant field strength H µ ν to compensate for lack of closure: Q A [ µ P Ξ ν ] Q + g Z MN Λ P X P N Q B µ ν Q δ B µ ν M = 2 ∂ [ µ Ξ ν ] N − g X P N Ξ Ξ � S � P d P QS A [ µ R A ν ] P − g X RM Λ Q − g 2 d MP Q ∂ [ µ A ν ] because of the extra gauge invariance, the degrees of freedom remain unchanged upon switching on the gauging there will be a balanced decomposition of vector and tensor fields

  14. Universal invariant Lagrangian containing kinetic terms for the tensor fields combined with a Chern-Simons term for the vector fields 1 Q + 1 2 i ε µ νρστ � � P � Q A σ R A τ S �� gZ MN B µ ν M Z MN L VT = D ρ B στ N + 4 d NP Q A ρ ∂ σ A τ 3 g X [ RS ] − 8 � M ∂ ν A ρ N ∂ σ A τ P 3 d MNP A µ + 3 P + 1 M A µ R � P A σ T ��� N A ν Q A ρ S A τ 4 g X [ QR ] ∂ σ A τ 5 g X [ ST ] this term is present for ALL gaugings there is no other restriction than the constraints on the embedding tensor dW, Samtleben, Trigiante, 2005 Can this be generalized?

  15. ⎭ ⎫ ⎬ ⎭ ⎫ ⎬ | | Non-abelian vector-tensor hierarchies Generalize the combined gauge algebra ☛ algebra closes on M ↵ non-closure α A µ Θ M M Λ P A µ Q − g Z M,I Ξ µ I M = ∂ µ Λ M − g X [ P Q ] δ A µ δ B µ ν I = 2 D [ µ Ξ ν ] I + · · · ☛ algebra closes on ↵ Z M,I B µ ν I non-closure J Φ µ ν J M δ B µ ν I = 2 D [ µ Ξ ν ] I + · · · − g Y IM Z M,I Y IN J = 0 J + 2 d I,MN Z N,J with J ≡ X MI Y IM M = 3 D [ µ Φ νρ ] I M + · · · δ S µ νρ I ☛ algebra closes on Y IM J S µ νρ J etcetera dW, Samtleben, 2005

  16. explicit results are complicated: N + 1 � � P A ρ ] M ( ∂ ν A ρ ] N A ν Q ) H µ νρ I ≡ 3 D [ µ B νρ ] I + 2 d I,MN A [ µ 3 gX [ P Q ] J S µ νρ I J M + g Y IM Y IM M = g Λ N X NI J S µ νρ J M S µ νρ I M − g Λ N X NP P δ S µ νρ I M D ν Ξ ρ ] I + 3 ∂ [ µ A ν M Ξ ρ ] I M + 3 A [ µ + 3 D [ µ Φ νρ ] I − 2 g d I,NP Z P,J A [ µ M A ν N Ξ ρ ] J + 4 d I,NP Λ [ M A [ µ N ] ∂ ν A ρ ] J d J,P Q Λ Q A [ µ P + 2 g X NI M A ν N A ρ ] P Plumbing strategy: repair the lack of closure iteratively by introducing tensor gauge fields of increasing rank M − I − M − A µ → B µ ν → S µ νρ I → etc Λ M M Ξ µI Φ µ ν I encoded by the embedding tensor !

  17. Leads to : rank ➯ 1 5 6 2 3 4 7 SL(5) 15 + 40 10 5 5 10 24 6 SO(5 , 5) 16 10 16 45 144 5 E 6(+6) 27 + 1728 27 27 78 351 4 E 7(+7) 133 + 8165 56 133 912 3 E 8(+8) 3875 + 147250 248 3875 Striking feature: rank D-2 : adjoint representation of the duality group dW, Samtleben, Nicolai, work in progress

  18. rank ➯ 1 5 6 2 3 4 7 SL(5) 15 + 40 10 5 5 10 24 6 SO(5 , 5) 16 10 16 45 144 5 E 6(+6) 27 + 1728 27 27 78 351 4 E 7(+7) 133 + 8165 56 133 912 3 E 8(+8) 3875 + 147250 248 3875 Striking feature: rank D-1 : embedding tensor

  19. rank ➯ 1 5 6 2 3 4 7 SL(5) 15 + 40 10 5 5 10 24 6 SO(5 , 5) 16 10 16 45 144 5 E 6(+6) 27 + 1728 27 27 78 351 4 E 7(+7) 133 + 8165 56 133 912 3 E 8(+8) 3875 + 147250 248 3875 Striking feature: rank D : closure constraint on the embedding tensor

  20. rank ➯ 1 5 6 2 3 4 7 SL(5) 15 + 40 10 5 5 10 24 6 SO(5 , 5) 16 10 16 45 144 5 E 6(+6) 27 + 1728 27 27 78 351 4 E 7(+7) 133 + 8165 56 133 912 3 E 8(+8) 3875 + 147250 248 3875 Perhaps most striking: implicit connection between space-time Hodge duality and the U-duality group Probes new states in M-Theory!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend