upper bounds on the size of 4 and 6 cycle free subgraphs
play

Upper bounds on the size of 4 - and 6 -cycle-free subgraphs of the - PowerPoint PPT Presentation

Proof 1 st try Introduction Flag Algebras Flags Upper bounds on the size of 4 - and 6 -cycle-free subgraphs of the hypercube J ozsef Balogh, Ping Hu, Bernard Lidick y and Hong Liu University of Illinois at Urbana-Champaign AMS - March


  1. Proof 1 st try Introduction Flag Algebras Flags Upper bounds on the size of 4 - and 6 -cycle-free subgraphs of the hypercube J´ ozsef Balogh, Ping Hu, Bernard Lidick´ y and Hong Liu University of Illinois at Urbana-Champaign AMS - March 18, 2012

  2. Proof 1 st try Introduction Flag Algebras Flags Hypercube • Q n is n -dimensional hypercube ( n -cube) Q 1 Q 2 Q 3 • e ( G ) := | E ( G ) | • ex Q ( n , F ) := the maximum number of edges of a F -free subgraph of Q n ex Q ( n , F ) • π Q ( F ) = lim e ( Q n ) n →∞

  3. Proof 1 st try Introduction Flag Algebras Flags Hypercube • Q n is n -dimensional hypercube ( n -cube) Q 1 Q 2 Q 3 • e ( G ) := | E ( G ) | • ex Q ( n , F ) := the maximum number of edges of a F -free subgraph of Q n ex Q ( n , F ) • π Q ( F ) = lim e ( Q n ) n →∞

  4. Proof 1 st try Introduction Flag Algebras Flags Hypercube • Q n is n -dimensional hypercube ( n -cube) Q 1 Q 2 Q 3 • e ( G ) := | E ( G ) | • ex Q ( n , F ) := the maximum number of edges of a F -free subgraph of Q n ex Q ( n , F ) • π Q ( F ) = lim e ( Q n ) n →∞

  5. Proof 1 st try Introduction Flag Algebras Flags Hypercube • Q n is n -dimensional hypercube ( n -cube) Q 1 Q 2 Q 3 • e ( G ) := | E ( G ) | • ex Q ( n , F ) := the maximum number of edges of a F -free subgraph of Q n ex Q ( n , F ) • π Q ( F ) = lim e ( Q n ) n →∞

  6. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2

  7. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 Q 7 Q 7 π Q ( C 4 ) ≥ 1 / 2

  8. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 Q 7 Q 7 π Q ( C 4 ) ≥ 1 / 2

  9. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 Theorem (Chung [1992], Brouwer–Dejter–Thomassen [1993]) π Q ( C 6 ) ≥ 1 / 4

  10. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 Theorem (Chung [1992], Brouwer–Dejter–Thomassen [1993]) π Q ( C 6 ) ≥ 1 / 4 Theorem (Conder [1993]) π Q ( C 6 ) ≥ 1 / 3

  11. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 . Theorem (Chung [1992]) π Q ( n , C 2 t ) = 0 for even t ≥ 4 . uredi–¨ Theorem (F¨ Ozkahya [2009]) π Q ( C 2 t ) = 0 for odd t ≥ 7 . if π Q ( C 10 ) = 0 is still open.

  12. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 . Theorem (Chung [1992]) π Q ( n , C 2 t ) = 0 for even t ≥ 4 . uredi–¨ Theorem (F¨ Ozkahya [2009]) π Q ( C 2 t ) = 0 for odd t ≥ 7 . if π Q ( C 10 ) = 0 is still open.

  13. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009])

  14. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009])

  15. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009]) π Q ( C 4 ) ≤ 0 . 62256 .

  16. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009]) π Q ( C 4 ) ≤ 0 . 62083 .

  17. Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009]) π Q ( C 4 ) ≤ 0 . 62083 . Theorem (Balogh–Hu–L–Liu, ind. Baber [2012+]) π Q ( C 4 ) ≤ 0 . 6068 .

  18. Proof 1 st try Introduction Flag Algebras Flags π Q ( n , C 6 ) Theorem (Conder [1993]) π Q ( C 6 ) ≥ 1 / 3 . Theorem (Chung [1992]) √ π Q ( C 6 ) ≤ 2 − 1 ≈ 0 . 41421 .

  19. Proof 1 st try Introduction Flag Algebras Flags π Q ( n , C 6 ) Theorem (Conder [1993]) π Q ( C 6 ) ≥ 1 / 3 . Theorem (Chung [1992]) √ π Q ( C 6 ) ≤ 2 − 1 ≈ 0 . 41421 .

  20. Proof 1 st try Introduction Flag Algebras Flags π Q ( n , C 6 ) Theorem (Conder [1993]) π Q ( C 6 ) ≥ 1 / 3 . Theorem (Chung [1992]) √ π Q ( C 6 ) ≤ 2 − 1 ≈ 0 . 41421 . Theorem (Balogh–Hu–L–Liu, ind. Baber [2012+]) π Q ( C 6 ) ≤ 0 . 3755 .

  21. Proof 1 st try Introduction Flag Algebras Flags Flag Algebras Definition p ( H , G ): the probability that a random | V ( H ) | -set U in V ( G ) induces G [ U ] isomorphic to H . Razborov [2007] developed flag algebras. Let G be the family of graphs forbidding some structures, then flag algebras can be used to bound G ∈G , | V ( G ) |→∞ p ( H , G ) . lim

  22. Proof 1 st try Introduction Flag Algebras Flags Results using Flag Algebras Theorem (Hladk´ y–Kr´ al’–Norine [2009]) Every n-vertex digraph with minimum outdegree at least 0 . 3465 n contains a triangle. Theorem (Hatami–Hladk´ y–Kr´ al’–Norine–Razborov [2011], Grzesik [2011]) The number of C 5 s in a triangle-free graph of order n is at most ( n / 5) 5 . Theorem (Falgas-Ravry–Vaughan [2011]) π ( K − 4 , C 5 , F 3 , 2 ) = 12 / 49 , π ( K − 4 , F 3 , 2 ) = 5 / 18 . F 3 , 2 : { 123 , 145 , 245 , 345 } , C 5 : { 123 , 234 , 345 , 451 , 512 } .

  23. Proof 1 st try Introduction Flag Algebras Flags Results using Flag Algebras Theorem (Hladk´ y–Kr´ al’–Norine [2009]) Every n-vertex digraph with minimum outdegree at least 0 . 3465 n contains a triangle. Theorem (Hatami–Hladk´ y–Kr´ al’–Norine–Razborov [2011], Grzesik [2011]) The number of C 5 s in a triangle-free graph of order n is at most ( n / 5) 5 . Theorem (Falgas-Ravry–Vaughan [2011]) π ( K − 4 , C 5 , F 3 , 2 ) = 12 / 49 , π ( K − 4 , F 3 , 2 ) = 5 / 18 . F 3 , 2 : { 123 , 145 , 245 , 345 } , C 5 : { 123 , 234 , 345 , 451 , 512 } .

  24. Proof 1 st try Introduction Flag Algebras Flags Results using Flag Algebras Theorem (Hladk´ y–Kr´ al’–Norine [2009]) Every n-vertex digraph with minimum outdegree at least 0 . 3465 n contains a triangle. Theorem (Hatami–Hladk´ y–Kr´ al’–Norine–Razborov [2011], Grzesik [2011]) The number of C 5 s in a triangle-free graph of order n is at most ( n / 5) 5 . Theorem (Falgas-Ravry–Vaughan [2011]) π ( K − 4 , C 5 , F 3 , 2 ) = 12 / 49 , π ( K − 4 , F 3 , 2 ) = 5 / 18 . F 3 , 2 : { 123 , 145 , 245 , 345 } , C 5 : { 123 , 234 , 345 , 451 , 512 } .

  25. Proof 1 st try Introduction Flag Algebras Flags Results using Flag Algebras Theorem (Hladk´ y–Kr´ al’–Norine [2009]) Every n-vertex digraph with minimum outdegree at least 0 . 3465 n contains a triangle. Theorem (Hatami–Hladk´ y–Kr´ al’–Norine–Razborov [2011], Grzesik [2011]) The number of C 5 s in a triangle-free graph of order n is at most ( n / 5) 5 . Theorem (Falgas-Ravry–Vaughan [2011]) π ( K − 4 , C 5 , F 3 , 2 ) = 12 / 49 , π ( K − 4 , F 3 , 2 ) = 5 / 18 . F 3 , 2 : { 123 , 145 , 245 , 345 } , C 5 : { 123 , 234 , 345 , 451 , 512 } .

  26. Proof 1 st try Introduction Flag Algebras Flags Proof by an Example Example π Q ( C 4 ) ≤ 2 / 3 Bound infinite problem by a finite piece. Definition H n : the family of spanning subgraphs of Q n not containing C 4 . Let H ∈ H s , G ∈ H n , s < n , p ( H , G ) is the probability that a random s -hypercube in G induces H . ρ ( G ) = e ( G ) / e ( Q n ) . � ρ ( G ) = ρ ( H ) p ( H , G ) H ∈H s ρ ( G ) ≤ max H ∈H s ρ ( H ) π Q ( C 4 ) ≤ max H ∈H s ρ ( H )

  27. Proof 1 st try Introduction Flag Algebras Flags Proof by an Example Example π Q ( C 4 ) ≤ 2 / 3 Bound infinite problem by a finite piece. Definition H n : the family of spanning subgraphs of Q n not containing C 4 . Let H ∈ H s , G ∈ H n , s < n , p ( H , G ) is the probability that a random s -hypercube in G induces H . ρ ( G ) = e ( G ) / e ( Q n ) . � ρ ( G ) = ρ ( H ) p ( H , G ) H ∈H s ρ ( G ) ≤ max H ∈H s ρ ( H ) π Q ( C 4 ) ≤ max H ∈H s ρ ( H )

  28. Proof 1 st try Introduction Flag Algebras Flags Proof by an Example Example π Q ( C 4 ) ≤ 2 / 3 Bound infinite problem by a finite piece. Definition H n : the family of spanning subgraphs of Q n not containing C 4 . Let H ∈ H s , G ∈ H n , s < n , p ( H , G ) is the probability that a random s -hypercube in G induces H . ρ ( G ) = e ( G ) / e ( Q n ) . � ρ ( G ) = ρ ( H ) p ( H , G ) H ∈H s ρ ( G ) ≤ max H ∈H s ρ ( H ) π Q ( C 4 ) ≤ max H ∈H s ρ ( H )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend