semi classical orthogonal polynomials and the painlev e
play

Semi-classical Orthogonal Polynomials and the Painlev e Equations - PowerPoint PPT Presentation

Semi-classical Orthogonal Polynomials and the Painlev e Equations Peter A Clarkson School of Mathematics, Statistics and Actuarial Science University of Kent, Canterbury, CT2 7NF, UK P.A.Clarkson@kent.ac.uk South African Symposium of


  1. Semi-classical Orthogonal Polynomials and the Painlev´ e Equations Peter A Clarkson School of Mathematics, Statistics and Actuarial Science University of Kent, Canterbury, CT2 7NF, UK P.A.Clarkson@kent.ac.uk South African Symposium of Numerical and Applied Mathematics University of Stellenbosch, South Africa March 2016

  2. Alternative discrete Painlev´ e I equation x n + x n +1 = y 2 y 0 ( t ) = − Ai ′ ( t ) n − t x 0 ( t ) = 0 , x n ( y n + y n − 1 ) = n Ai( t ) Second Painlev´ e equation d 2 q d z 2 = 2 q 3 + zq + A with A a constant. References • P A Clarkson, A F Loureiro & W Van Assche , “Unique positive so- lution for the alternative discrete Painlev´ e I equation”, Journal of Differ- ence Equations and Applications , DOI: 10.1080/10652469.2015.1098635 (2016) • P A Clarkson , “On Airy Solutions of the Second Painlev´ e Equation”, Studies in Applied Mathematics , DOI: 10.1111/sapm.12123 (2016) SANUM, Stellenbosch, March 2016

  3. Painlev´ e Equations d 2 q d z 2 = 6 q 2 + z P I d 2 q d z 2 = 2 q 3 + zq + A P II � d q � 2 d z + Aq 2 + B d 2 q d z 2 = 1 − 1 d q + Cq 3 + D P III q d z z z q � d q � 2 d 2 q d z 2 = 1 + 3 2 q 3 + 4 zq 2 + 2( z 2 − A ) q + B P IV 2 q d z q � 1 �� d q � 2 � � d 2 q d z + ( q − 1) 2 1 − 1 d q Aq + B d z 2 = 2 q + P V z 2 q − 1 d z z q + Cq z + Dq ( q + 1) q − 1 � 1 �� d q � 2 � 1 � d q d 2 q d z 2 = 1 1 1 1 1 q + q − 1 + − z + z − 1 + P VI q − z d z q − z d z 2 � � + q ( q − 1)( q − z ) A + Bz q 2 + C ( z − 1) ( q − 1) 2 + Dz ( z − 1) z 2 ( z − 1) 2 ( q − z ) 2 with A , B , C and D arbitrary constants. SANUM, Stellenbosch, March 2016

  4. Special function solutions of Painlev´ e equations Number of Associated Special Number of (essential) orthogonal function parameters parameters polynomial P I 0 — Airy P II 1 0 — Ai( z ) , Bi( z ) Bessel 2 1 P III — J ν ( z ) , I ν ( z ) , K ν ( z ) Parabolic Hermite P IV 2 1 D ν ( z ) H n ( z ) Kummer Associated M ( a, b, z ) , U ( a, b, z ) Laguerre P V 3 2 Whittaker L ( k ) n ( z ) M κ,µ ( z ) , W κ,µ ( z ) hypergeometric Jacobi P VI 4 3 P ( α,β ) ( z ) 2 F 1 ( a, b ; c ; z ) n SANUM, Stellenbosch, March 2016

  5. Monic Orthogonal Polynomials Let P n ( x ) , n = 0 , 1 , 2 , . . . , be the monic orthogonal polynomials of degree n in x , with respect to the positive weight ω ( x ) , such that � b P m ( x ) P n ( x ) ω ( x ) d x = h n δ m,n , h n > 0 , m, n = 0 , 1 , 2 , . . . a One of the important properties that orthogonal polynomials have is that they satisfy the three-term recurrence relation xP n ( x ) = P n +1 ( x ) + α n P n ( x ) + β n P n − 1 ( x ) where the recurrence coefficients are given by � � ∆ n +1 ∆ n β n = ∆ n +1 ∆ n − 1 α n = − , ∆ 2 ∆ n +1 ∆ n n with � � � � � � � � µ 0 µ 1 . . . µ n − 1 µ 0 µ 1 . . . µ n − 2 µ n � � � � � � � � µ 1 µ 2 . . . µ n µ 1 µ 2 . . . µ n − 1 µ n +1 � � � � � ∆ n = , ∆ n = . . . . . . . ... ... � . . . � � . . . . � . . . . . . . � � � � � � � � µ n − 1 µ n . . . µ 2 n − 2 µ n − 1 µ n . . . µ 2 n − 3 µ 2 n − 1 � b x k ω ( x ) d x are the moments of the weight ω ( x ) . and µ k = a SANUM, Stellenbosch, March 2016

  6. Semi-classical Orthogonal Polynomials Consider the Pearson equation satisfied by the weight ω ( x ) d d x [ σ ( x ) ω ( x )] = τ ( x ) ω ( x ) • Classical orthogonal polynomials : σ ( x ) and τ ( x ) are polynomials with deg ( σ ) ≤ 2 and deg ( τ ) = 1 ω ( x ) σ ( x ) τ ( x ) exp( − x 2 ) 1 − 2 x Hermite x ν exp( − x ) Laguerre x 1 + ν − x (1 − x ) α (1 + x ) β 1 − x 2 Jacobi β − α − (2 + α + β ) x • Semi-classical orthogonal polynomials : σ ( x ) and τ ( x ) are polynomi- als with either deg ( σ ) > 2 or deg ( τ ) > 1 ω ( x ) σ ( x ) τ ( x ) 3 x 3 + tx ) exp( − 1 t − x 2 1 Airy | x | ν exp( − x 2 + tx ) 1 + ν + tx − 2 x 2 x semi-classical Hermite | x | 2 ν +1 exp( − x 4 + tx 2 ) 2 ν + 2 + 2 tx 2 − 4 x 4 x Generalized Freud SANUM, Stellenbosch, March 2016

  7. If the weight has the form ω ( x ; t ) = ω 0 ( x ) exp( tx ) � ∞ x k ω 0 ( x ) exp( tx ) d x exist for all k ≥ 0 . where the integrals −∞ • The recurrence coefficients α n ( t ) and β n ( t ) satisfy the Toda system d α n d β n d t = β n − β n +1 , d t = β n ( α n − α n − 1 ) • The k th moment is given by �� ∞ � � ∞ x k ω 0 ( x ) exp( tx ) d x = d k = d k µ 0 µ k ( t ) = ω 0 ( x ) exp( tx ) d x d t k d t k −∞ −∞ • Since µ k ( t ) = d k µ 0 d t k , then ∆ n ( t ) and � ∆ n ( t ) can be expressed as Wronskians � � � d j + k µ 0 � n − 1 d t , . . . , d n − 1 µ 0 µ 0 , d µ 0 ∆ n ( t ) = W = det d t n − 1 d t j + k j,k =0 � � d t , . . . , d n − 2 µ 0 d t n − 2 , d n µ 0 µ 0 , d µ 0 = d � ∆ n ( t ) = W d t ∆ n ( t ) d t n SANUM, Stellenbosch, March 2016

  8. An Alternative Discrete Painlev´ e I Equation x n + x n +1 = y 2 y 0 ( t ) = − Ai ′ ( t ) n − t x 0 ( t ) = 0 , x n ( y n + y n − 1 ) = n Ai( t ) • PAC, A Loureiro & W Van Assche , “Unique positive solution for the alternative discrete Painlev´ e I equation”, Journal of Difference Equations and Applications , DOI: 10.1080/10652469.2015.1098635 (2016) SANUM, Stellenbosch, March 2016

  9. x n + x n +1 = y 2 y 0 ( t ) = − Ai ′ ( t ) n − t x 0 ( t ) = 0 , x n ( y n + y n − 1 ) = n Ai( t ) The system is highly sensitive to the initial conditions [50 digits] Ai(0) = 3 1 / 3 Γ( 2 y 0 (0) = − Ai ′ (0) 3 ) x 0 (0) = 0 Γ( 1 3 ) SANUM, Stellenbosch, March 2016

  10. y 0 (0) = 0 . 7290111 ... y 0 (0) = 0 . 729 y 0 (0) = 0 . 72902 x 0 (0) = 0 x 0 (0) = 0 x 0 (0) = 0 SANUM, Stellenbosch, March 2016

  11. Orthogonal Polynomials on Complex Contours Consider the semi-classical Airy weight � � 3 x 3 + tx − 1 ω ( x ; t ) = exp , t > 0 on the curve C from e 2 π i / 3 ∞ to e − 2 π i / 3 ∞ . The moments are � � � 3 x 3 + tx − 1 µ 0 ( t ) = exp d x = Ai( t ) C � d x = d k � � x k exp 3 x 3 + tx − 1 d t k Ai( t ) = Ai ( k ) ( t ) µ k ( t ) = C where Ai( t ) is the Airy function , the Hankel determinant is � d j + k � � � Ai( t ) , Ai ′ ( t ) , . . . , Ai ( n − 1) ( t ) ∆ n ( t ) = W = det d t j + k Ai( t ) j,k =0 with ∆ 0 ( t ) = 1 , and the recursion coefficients are β n ( t ) = d 2 α n ( t ) = d d t ln ∆ n +1 ( t ) ∆ n ( t ) , d t 2 ln ∆ n ( t ) with d t ln Ai( t ) = Ai ′ ( t ) α 0 ( t ) = d Ai( t ) , β 0 ( t ) = 0 SANUM, Stellenbosch, March 2016

  12. The recurrence coefficients α n ( t ) and β n ( t ) satisfy the discrete system ( α n + α n − 1 ) β n − n = 0 (1) α 2 n + β n + β n +1 − t = 0 and the differential system (Toda) d α n d β n d t = β n +1 − β n , d t = β n ( α n − α n − 1 ) (2) Letting x n = − β n and y n = − α n in (1) and (2) yields x n + x n +1 = y 2 n − t (3) x n ( y n + y n − 1 ) = n which is the discrete system we’re interested in, and d x n d y n (4) d t = x n ( y n − 1 − y n ) , d t = x n +1 − x n Then eliminating x n +1 and y n − 1 between (3) and (4) yields d y n d x n d t = y 2 (5) n − 2 x n − t, d t = − 2 x n y n + n SANUM, Stellenbosch, March 2016

  13. Consider the system d y n d x n d t = y 2 n − 2 x n − t, d t = − 2 x n y n + n • Eliminating x n yields d 2 y n d t 2 = 2 y 3 n − 2 ty n − 2 n − 1 which is equivalent to d 2 q d z 2 = 2 q 3 + zq + n + 1 2 i.e. P II with A = n + 1 2 . • Eliminating y n yields � d x n � 2 d 2 x n n + 2 tx n − n 2 1 + 4 x 2 d t 2 = 2 x n d t 2 x n which is equivalent to � d v � 2 d 2 v − 2 v 2 − zv − n 2 d z 2 = 1 2 v d z 2 v an equation known as P 34 . SANUM, Stellenbosch, March 2016

  14. x n + x n +1 = y 2 y 0 ( t ) = − Ai ′ ( t ) n − t x 0 ( t ) = 0 , x n ( y n + y n − 1 ) = n Ai( t ) Solving for x n yields n + 1 n = y 2 + n − t y n + y n +1 y n + y n − 1 which is known as alt-d P I ( Fokas, Grammaticos & Ramani [1993] ). We have seen that y n and x n satisfy d 2 y n d t 2 = 2 y 3 n − 2 ty n − 2 n − 1 � d x n � 2 d 2 x n n + 2 tx n − n 2 1 + 4 x 2 d t 2 = 2 x n d t 2 x n which have “Airy-type” solutions x n ( t ) = − d 2 y n ( t ) = d d t ln τ n ( t ) τ n +1 ( t ) , d t 2 ln τ n ( t ) where � d j + k � τ n ( t ) = det d t j + k Ai( t ) , n ≥ 1 j,k =0 and τ 0 ( t ) = 1 . SANUM, Stellenbosch, March 2016

  15. Theorem ( PAC, Loureiro & Van Assche [2016] ) For positive values of t , there exists a unique solution of x n + x n +1 = y 2 n − t x n ( y n + y n − 1 ) = n with x 0 ( t ) = 0 for which x n +1 ( t ) > 0 and y n ( t ) > 0 for all n ≥ 0 . This solution corresponds to the initial value y 0 ( t ) = − Ai ′ ( t ) Ai( t ) . Theorem ( PAC, Loureiro & Van Assche [2016] ) For positive values of t , there exists a unique solution of n + 1 n = y 2 + n − t y n + y n +1 y n + y n − 1 for which y n ( t ) ≥ 0 for all n ≥ 0 . This solution corresponds to the initial values y 0 ( t ) = − Ai ′ ( t ) 1 Ai( t ) , y 1 ( t ) = − y 0 ( t ) + y 2 0 ( t ) − t SANUM, Stellenbosch, March 2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend