orthogonal polynomials for bernoulli and euler polynomials
play

Orthogonal Polynomials for Bernoulli and Euler Polynomials Lin JIU - PowerPoint PPT Presentation

Orthogonal Polynomials for Bernoulli and Euler Polynomials Lin JIU Dalhousie University Number Theory Seminar Jan. 14th, 2019 Acknowledgment Diane Shi Tianjin University Objects Bernoulli numbers B n : Euler numbers E n :


  1. Orthogonal Polynomials for Bernoulli and Euler Polynomials Lin JIU Dalhousie University Number Theory Seminar Jan. 14th, 2019

  2. Acknowledgment ◮ Diane Shi ◮ Tianjin University

  3. Objects ◮ Bernoulli numbers B n : ◮ Euler numbers E n : ∞ t n 2 e t ∞ t n t � � e t − 1 = B n n !; e 2 t + 1 = E n n !; n = 0 n = 0 ◮ Bernoulli polynomial B n ( x ) : ◮ Euler polynomial E n ( x ) : ∞ B n ( x ) t n ∞ E n ( x ) t n 2 t e t − 1 e xt = e t + 1 e xt = � � n !; n !; n = 0 n = 0 ◮ Bernoulli polynomial of order p ◮ Euler polynomial of order p B ( p ) E ( p ) n ( x ) : n ( x ) : � p � p ∞ n ( x ) t n ∞ n ( x ) z n � � 2 t e xt = e xz = � B ( p ) � E ( p ) n !; n ! ; e z + 1 e t − 1 n = 0 n = 0 B ( 1 ) n ( x ) = B n ( x ) ; B n ( 0 ) = B n ; E ( 1 ) n ( x ) = E n ( x ) ; E n ( 1 / 2 ) = E n / 2 n .

  4. Orthogonal Polynomials Let X be a random variable with density function p ( t ) on R and with moments m n , i.e., � m n = E [ X n ] = t n p ( t ) d t . R Let P n ( y ) be the monic orthogonal polynomials with respect to X (or w. r. t. m n ), i.e., deg P n = n , LC [ P n ] = 1, and � � c n , if m = n ; P m ( t ) P n ( t ) p ( t ) d t = c n δ m , n = 0 , otherwise. R Equivalently, for all 0 ≤ r < n � y r P n ( y ) � = 0 . � � y k = m k P n satisfies a three-term recurrence: P 0 = 1, P 1 = y − s 0 , and P n + 1 ( y ) = ( y − s n ) P n ( y ) − t n P n − 1 ( y ) . Example . 1. Carlitz [3, eq. 4.7] and also with Al-Salam [1, p. 93] gave the monic orthogonal polynomials, denoted by Q n ( y ) , with respect to E n : Q n + 1 ( y ) = yQ n ( y ) + n 2 Q n − 1 ( y ) . 2. Touchard [16, eq. 44] computed the monic orthogonal polynomials with respect to the B n , denoted by R n ( y ) : n 4 � y + 1 � R n + 1 ( y ) = R n ( y ) + 4 ( 2 n + 1 )( 2 n − 1 ) R n − 1 ( y ) . 2

  5. 1st Task ◮ Find the orthogonal polynomials with respect to B n ( x ) , denoted by ̺ n ( y ) ; ◮ and the orthogonal polynomials with respect to E n ( x ) , denoted by Ω n ( y ) . Namely, for 0 ≤ r < n , � � y r ̺ n ( y ) � = 0 = y r Ω n ( y ) � . � � � y k = B k ( x ) � y k = E k ( x ) [Question] Why? ◮ Generalization ◮ Probabilistic interpretations: Letting p B ( t ) := π 2 sech 2 ( π t ) and p E ( t ) := sech ( π t ) , ( t ∈ R ) we define two random variables L B and L E with density functions p B and p E , respectively. Then, with i 2 = − 1, � n � � n �� iL B + x − 1 � it + x − 1 � B n ( x ) = E = p B ( t ) d t , [ 5 , eq . 2 . 14 ] 2 2 R � n � � n �� iL E + x − 1 � � it + x − 1 E n ( x ) = E = p E ( t ) d t . [ 9 , eq . 2 . 3 ] 2 2 R

  6. 3rd Reason ◮ The generalized Motzkin numbers: 1. Motzkin numbers: M 0 , 0 = 1, M n , k = 0 if k > n or n < 0, and M n + 1 , k = M n , k − 1 + M n , k + M n , k + 1 . M n , k − 1 M n , k M n , k + 1 ց ↓ ւ M n + 1 , k M n , k = # of paths from ( 0 , 0 ) to ( n , k ) . Path: Lattice path on N 2 (0 ∈ N ) and only three types are considered:  α k : ( j , k ) → ( j + 1 , k + 1 ) diagonally up ր   β k : ( j , k ) → ( j + 1 , k ); horizontal →  γ k : ( j , k ) → ( j + 1 , k − 1 ) diagonally down ց  Example .   1 M 0 , k M 1 , k 1 1    ⇒ M 3 , 1 = 5   2 2 1 M 2 , k  M 3 , k 4 5 3 1

  7. 3rd Reason ◮ The generalized Motzkin numbers: 2. generalized Motzkin numbers: M n + 1 , k = M n , k − 1 + σ k M n , k + τ k + 1 M n , k + 1

  8. 3rd Reason ◮ The generalized Motzkin numbers: 2. generalized Motzkin numbers: M n + 1 , k = M n , k − 1 + σ k M n , k + τ k + 1 M n , k + 1 M n , k = sum of weighted lattice paths from ( 0 , 0 ) to ( n , k ) . ∞ 1 M n , 0 z n = � τ 1 z 2 1 − σ 0 z − n = 0 1 − σ 1 z − τ 2 z 2 ··· Let X be an arbitrary random variable, with moments m n and monic orthogonal polynomials P n ( y ) satisfying the recurrence P n + 1 ( y ) = ( y − s n ) P n ( y ) − t n P n − 1 ( y ) . Then, we have ∞ m 0 m n z n = � . t 1 z 2 1 − s 0 z − n = 0 t 2 z 2 1 − s 1 z − 1 − s 2 z −···

  9. Continued Fractions By letting ( σ k , τ k ) = ( s k , t k ) . If further assuming m 0 = 1, we have M n , 0 = m n = E [ X n ] . Example . The monic orthogonal polynomials with respect to E n , Q n ( y ) , satisfy Q n + 1 ( y ) = yQ n ( y ) + n 2 Q n − 1 ( y ) . Euler numbers E n are given by the weighted lattice paths ( 1 , 0 , − k 2 ) ⇒ horizontal paths are eliminated. Therefore, E n counts the weighted Dyck paths , related to Catalan numbers C n . n = 6: C 3 := 1 � 6 � = 5 4 3 Then, by noting that each diagonally down path from ( j , k ) to ( j + 1 , k − 1 ) has weight − k 2 , we have 3 2 2 2 1 2 + 2 2 2 2 1 2 + 1 2 2 2 1 2 + 2 2 1 2 1 2 + 1 2 1 2 1 2 � − 61 = E 6 = ( − 1 ) 3 � .

  10. 1st Task ◮ Find the orthogonal polynomials with respect to B n ( x ) , denoted by ̺ n ( y ) ; ◮ and the orthogonal polynomials with respect to E n ( x ) , denoted by Ω n ( y ) . Namely, for 0 ≤ r < n , � � y r ̺ n ( y ) = 0 = y r Ω n ( y ) � � . � � � y k = B k ( x ) � y k = E k ( x ) NOTE: � n � � n � �� iL B + x − 1 �� iL B − 1 B n ( x ) = E and B n = B n ( 0 ) = E , 2 2 and the monic orthogonal polynomials with respect to the B n , denoted by R n ( y ) , are given by n 4 � y + 1 � R n + 1 ( y ) = R n ( y ) + 4 ( 2 n + 1 )( 2 n − 1 ) R n − 1 ( y ) . 2 Let c be a constant. ∼ P n ( y ) X X + c ∼ ? ∼ ? cX E n = 2 n E n ( 1 / 2 )

  11. 1st Task Lemma . [L. Jiu and D. Shi] random variable moments monic orthogoal polynomial X m n P n ( y ) : P n + 1 ( y ) = ( y − s n ) P n ( y ) − t n P n − 1 ( y ) n � n � � m k c n − k ¯ P n + 1 ( y ) = ( y − s n − c ) ¯ ¯ P n ( y ) − t n ¯ X + c P n ( y ) : P n − 1 ( y ) k k = 0 ˜ P n + 1 ( y ) = ( y − Cs n ) ˜ ˜ P n ( y ) − C 2 t n ˜ C n m n CX P n ( y ) : P n − 1 ( y ) Proof. ¯ P n ( y ) := C n P n ( y / C ) . ˜ P n ( y ) := P n ( y − c ) and Theorem . [L. Jiu and D. Shi] n 4 � y + 1 � R n + 1 ( y ) = R n ( y ) + 4 ( 2 n + 1 )( 2 n − 1 ) R n − 1 ( y ) B n 2 n 4 � y − x + 1 � B n ( x ) ̺ n + 1 ( y ) = ̺ n ( y ) + 4 ( 2 n + 1 )( 2 n − 1 ) ̺ n − 1 ( y ) 2 Q n + 1 ( y ) = yQ n ( y ) + n 2 Q n − 1 ( y ) E n Ω n ( y ) + n 2 y − x + 1 E n ( x ) Ω n + 1 ( y ) = � � 4 Ω n − 1 ( y ) 2

  12. 2nd Task ◮ Find the orthogonal polynomials with respect to B ( p ) n ( x ) , denoted by ̺ ( p ) n ( y ) ; ◮ and the orthogonal polynomials with respect to E ( p ) ( x ) , denoted by Ω ( p ) n ( y ) . n Recall that ◮ Bernoulli polynomial B n ( x ) : ◮ Euler polynomial E n ( x ) : ∞ B n ( x ) t n ∞ E n ( x ) t n 2 t e t − 1 e xt = e t + 1 e xt = � � n ! ; n ! ; n = 0 n = 0 ◮ Bernoulli polynomial of order ◮ Euler polynomial of order p p B ( p ) E ( p ) n ( x ) : ( x ) : n � p ∞ n ( x ) t n � p ∞ ( x ) z n � � 2 t e xt = B ( p ) e xz = E ( p ) � � n ! ; n ! ; n e t − 1 e z + 1 n = 0 n = 0 ◮ ◮ � n � � n � �� iL B + x − 1 �� iL E + x − 1 B n ( x ) = E E n ( x ) = E 2 2 B ( p ) E ( p ) n ( x ) = E [?] ( x ) = E [?] n

  13. Sum of random variables Let X and Y be two independent variables, with moments m n and m ′ n , respectively. In addition, define the moment generating functions: ∞ ∞ t n t n � e tX � � e tY � � � F ( t ) := E = and G ( t ) := E = m ′ m n n n ! n ! n = 0 n = 0 Then, n � n � � E [( X + Y ) n ] = m k m ′ n − k k k = 0 and � e t ( X + Y ) � E = F ( t ) G ( t ) . Consider a sequence of independent and identically distributed (i. i. d. ) random � p � j = 1 with each L E j ∼ L E (sech( t )) . Then E ( p ) variables L E j ( x ) is the n th moment of a n certain random variable: n     p iL E j − p E ( p ) �  . ( x ) = E  x + n   2 j = 1 � p � j = 1 with L B j ∼ L B ( π sech 2 ( π t ) / 2 ) , Similarly, given an i. i. d. L B j n     p iL B j − p B ( p ) �  . n ( x ) = E  x +   2 j = 1

  14. Hankel Determinant Given a sequence a = ( a n ) ∞ n = 0 , the n th Hankel determinant of a is defined by · · ·  a 0 a 1 a 2 a n  a 1 a 2 a 3 · · · a n + 1   ∆ n ( a ) := det . . . .  .  ...  . . . .   . . . .  a n a n + 1 a n + 2 · · · a 2 n Recall that given a sequence of numbers/moments m := ( m n ) ∞ n = 0 , let P n ( y ) be the monic orthogonal polynomials with respect to m n . Namely, for all 0 ≤ r < n � y r P n ( y ) � = 0 . � y k = m k � Suppose P n satisfies the three-term recurrence: P n + 1 ( y ) = ( y − s n ) P n ( y ) − t n P n − 1 ( y ) . Theorem . (1) If m 2 k + 1 = 0 for all k ∈ N , then, s n = 0; Recall The monic orthogonal polynomials with respect to E n , Q n ( y ) , satisfy Q n + 1 ( y ) = yQ n ( y ) + n 2 Q n − 1 ( y ) . And � ∞ t n 2 e t � � E 2 k + 1 = 0 . n ! = e 2 t + 1 = sech( t ) . E n n = 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend