relations for barnes zeta functions
play

Relations for Barnes Zeta Functions Abdelmejid Bayad Universit e - PowerPoint PPT Presentation

Relations for Barnes Zeta Functions Abdelmejid Bayad Universit e dEvry Val dEssonne Matthias Beck San Francisco State University math.sfsu.edu/beck In fond memory of my teacher, mentor, and friend Marvin Knopp Bernoulli Relations


  1. Relations for Barnes Zeta Functions Abdelmejid Bayad Universit´ e d’Evry Val d’Essonne Matthias Beck San Francisco State University math.sfsu.edu/beck In fond memory of my teacher, mentor, and friend Marvin Knopp

  2. Bernoulli Relations � n � Euler n � � z k z e z − 1 = B k − → B j B n − j = − n B n − 1 − ( n − 1) B n k ! j et al k ≥ 0 j =0 Relations for Barnes Zeta Functions Matthias Beck 3

  3. Bernoulli Relations � n � Euler n � � z k z e z − 1 = B k − → B j B n − j = − n B n − 1 − ( n − 1) B n k ! j et al k ≥ 0 j =0 N¨ orlund (1922): Relations for Bernoulli polynomials B k ( x ) defined through � z e xz B k ( x ) z k e z − 1 = k ! k ≥ 0 Relations for Barnes Zeta Functions Matthias Beck 3

  4. Bernoulli Relations � n � Euler n � � z k z e z − 1 = B k − → B j B n − j = − n B n − 1 − ( n − 1) B n k ! j et al k ≥ 0 j =0 N¨ orlund (1922): Relations for Bernoulli polynomials B k ( x ) defined through � z e xz B k ( x ) z k e z − 1 = k ! k ≥ 0 Dilcher (1996): Relations for Bernoulli numbers of order n defined through � � n � z k z B ( n ) = e z − 1 k k ! k ≥ 0 and their polynomial generalization. Relations for Barnes Zeta Functions Matthias Beck 3

  5. Bernoulli Relations � n � n Euler � � z k z e z − 1 = − → B j B n − j = − n B n − 1 − ( n − 1) B n B k k ! j et al j =0 k ≥ 0 N¨ orlund (1922): Relations for Bernoulli polynomials B k ( x ) defined through � z e xz B k ( x ) z k e z − 1 = k ! k ≥ 0 Dilcher (1996): Relations for Bernoulli numbers of order n defined through � � n � z k z B ( n ) = e z − 1 k k ! k ≥ 0 and their polynomial generalization. Goal: Relations for Bernoulli–Barnes numbers B k ( a ) defined through � z n B k ( a ) z k a = ( a 1 , a 2 , . . . , a n ) ∈ R n ( e a 1 z − 1) · · · ( e a n z − 1) = k ! , > 0 k ≥ 0 Relations for Barnes Zeta Functions Matthias Beck 3

  6. Bernoulli–Barnes Relations � z n B k ( a ) z k a = ( a 1 , a 2 , . . . , a n ) ∈ R n ( e a 1 z − 1) · · · ( e a n z − 1) = k ! , > 0 k ≥ 0 Theorem 1 For n ≥ 3 and odd m ≥ 1 � � n + j − 4 � n � � 1 1 if n = m = 3 2 B m − n + j ( a I ) = j − 2 ( m − n + j )! 0 otherwise j = n − m | I | = j where the inner sum is over all subsets I ⊆ { 1 , 2 , . . . , n } of cardinality j and a I := ( a i : i ∈ I ) . Relations for Barnes Zeta Functions Matthias Beck 4

  7. Bernoulli–Barnes Relations � z n B k ( a ) z k a = ( a 1 , a 2 , . . . , a n ) ∈ R n ( e a 1 z − 1) · · · ( e a n z − 1) = k ! , > 0 k ≥ 0 Theorem 1 For n ≥ 3 and odd m ≥ 1 � � n + j − 4 � n � � 1 1 if n = m = 3 2 B m − n + j ( a I ) = j − 2 ( m − n + j )! 0 otherwise j = n − m | I | = j where the inner sum is over all subsets I ⊆ { 1 , 2 , . . . , n } of cardinality j and a I := ( a i : i ∈ I ) . Corollary For n ≥ 3 and odd m ≥ n − 2 � � n + j − 4 � � n � n � m ! 3 if n = m = 3 B ( j ) m − n + j = j − 2 ( m − n + j )! j 0 otherwise j =2 Relations for Barnes Zeta Functions Matthias Beck 4

  8. Bernoulli–Barnes Relations � z n B k ( a ) z k a = ( a 1 , a 2 , . . . , a n ) ∈ R n ( e a 1 z − 1) · · · ( e a n z − 1) = k ! , > 0 k ≥ 0 Theorem 1 For n ≥ 3 and odd m ≥ 1 � � n + j − 4 � n � � 1 1 if n = m = 3 2 B m − n + j ( a I ) = j − 2 ( m − n + j )! 0 otherwise j = n − m | I | = j where the inner sum is over all subsets I ⊆ { 1 , 2 , . . . , n } of cardinality j , and a I := ( a i : i ∈ I ) . Poof Don’t use a Siegel-type integration path with integrand z s − 1 ( e a 1 z − 1) ( e a 2 z − 1) · · · ( e a n z − 1) Relations for Barnes Zeta Functions Matthias Beck 4

  9. Bernoulli–Barnes Relations � z n B k ( a ) z k a = ( a 1 , a 2 , . . . , a n ) ∈ R n ( e a 1 z − 1) · · · ( e a n z − 1) = k ! , > 0 k ≥ 0 Theorem 1 For n ≥ 3 and odd m ≥ 1 � � n + j − 4 � n � � 1 1 if n = m = 3 2 B m − n + j ( a I ) = j − 2 ( m − n + j )! 0 otherwise j = n − m | I | = j where the inner sum is over all subsets I ⊆ { 1 , 2 , . . . , n } of cardinality j , and a I := ( a i : i ∈ I ) . Proof idea Show that � n + j − 4 � n � ( − z ) n − j � z | I | e z � i ∈ I a i � i ∈ I ( e a i z − 1) j − 2 j =2 | I | = j is an even function of z . Relations for Barnes Zeta Functions Matthias Beck 4

  10. Barnes Zeta Functions � 1 ζ n ( z, x ; a ) := ( x + m 1 a 1 + · · · + m n a n ) z m ∈ Z n ≥ 0 defined for Re( x ) > 0 , Re( z ) > n and continued meromorphically to C . a = (1 , 1 , . . . , 1) − → ζ n ( s ; x ) := ζ ( s ; x, (1 , . . . , 1)) is the Hurwitz zeta function of order n . The Hurwitz zeta function is the special case n = 1 , the Riemmann zeta function the special case x = 1 . Relations for Barnes Zeta Functions Matthias Beck 5

  11. Barnes Zeta Functions � 1 ζ n ( z, x ; a ) := ( x + m 1 a 1 + · · · + m n a n ) z m ∈ Z n ≥ 0 defined for Re( x ) > 0 , Re( z ) > n and continued meromorphically to C . a = (1 , 1 , . . . , 1) − → ζ n ( s ; x ) := ζ ( s ; x, (1 , . . . , 1)) is the Hurwitz zeta function of order n . The Hurwitz zeta function is the special case n = 1 , the Riemmann zeta function the special case x = 1 . ζ n ( − k, x ; a ) = ( − 1) n k ! ( k + n )! B k + n ( x ; a ) where B k ( x ; a ) is a Bernoulli–Barnes polynomial defined through � z n e xz B k ( x ; a ) z k ( e a 1 z − 1) · · · ( e a n z − 1) = k ! k ≥ 0 Note that B k ( a ) = B k (0; a ) Relations for Barnes Zeta Functions Matthias Beck 5

  12. Barnes Zeta Relations � 1 ζ n ( z, x ; a ) := ( x + m 1 a 1 + · · · + m n a n ) z m ∈ Z n ≥ 0 � z n e xz B k ( x ; a ) z k ( e a 1 z − 1) · · · ( e a n z − 1) = k ! k ≥ 0 Theorem 2 Let a 1 , . . . , a n be pairwise coprime positive integers. Then � n − 1 � n − 1 � ( − 1) n − 1 ( − 1) k ζ ( s ; x, a ) = B n − 1 − k ( x ; a ) ζ ( s − k ; x ) ( n − 1)! k k =0 � � a j − 1 n � � s ; x + r a − s + σ − r ( a 1 , . . . , � a j , . . . , a n ; a j ) ζ j a j j =1 r =0 a j − 1 � e 2 πimr/a j a j . . . , a n ; a j ) := 1 � 1 − e 2 πima k /a j � where σ r ( a 1 , . . . , � � a j k � = j m =1 is a Fourier–Dedekind sum. Relations for Barnes Zeta Functions Matthias Beck 6

  13. Reciprocity Theorems Theorem 2 Let a 1 , . . . , a n be pairwise coprime positive integers. Then � n − 1 � n − 1 � ( − 1) n − 1 ( − 1) k ζ ( s ; x, a ) = B n − 1 − k ( x ; a ) ζ ( s − k ; x ) ( n − 1)! k k =0 � � a j − 1 n � � s ; x + r a − s + σ − r ( a 1 , . . . , � a j , . . . , a n ; a j ) ζ . j a j j =1 r =0 Corollary [ n = 2 ] Let a, b be coprime positive integers. Then � � ζ ( s ; x, ( a, b )) = 1 1 − x abζ ( s − 1; x ) + ζ ( s ; x ) ab � b − 1 r � � � � a − 1 r � � � a − 1 a − 1 � � s ; x + r s ; x + r − a − s − b − s ζ ζ . a a b b r =0 r =0 Relations for Barnes Zeta Functions Matthias Beck 7

  14. Reciprocity Theorems Corollary [ n = 2 ] Let a, b be coprime positive integers. Then � � ζ ( s ; x, ( a, b )) = 1 1 − x abζ ( s − 1; x ) + ζ ( s ; x ) ab � b − 1 r � � � � a − 1 r � � � a − 1 a − 1 � � s ; x + r s ; x + r − a − s − b − s ζ ζ . a a b b r =0 r =0 Corollary [ s ∈ Z < 0 ] Let a, b be coprime positive integers. Then � b − 1 r � � x + r � � a − 1 r � � x + r � a − 1 a − 1 � � a m + b m = B m +1 B m +1 a a b b r =0 r =0 � x � m + 2 B m +2 ( x, ( a, b )) + 1 1 m + 1 m + 2 B m +2 ( x ) + ab − 1 B m +1 ( x ) . ab This is reminiscent of reciprocity theorems for Dedekind sums. . . Relations for Barnes Zeta Functions Matthias Beck 7

  15. Reciprocity Theorems � b − 1 r � � x + r � � a − 1 r � � x + r � a − 1 a − 1 � � a m + b m = B m +1 B m +1 a a b b r =0 r =0 � x � m + 2 B m +2 ( x, ( a, b )) + 1 1 m + 1 m + 2 B m +2 ( x ) + ab − 1 B m +1 ( x ) ab is a polynomial generalization of Apostol’s reciprocity law � � 1 a m − 1 s m ( a, b ) + b m − 1 s m ( b, a ) = m � m + 1 � m +1 � ( − 1) m +1 − i a i b m +1 − i B i B m +1 − i i i =0 for � a − 1 r � � r � �� ar �� a − 1 a − 1 � � r S m ( a, b ) := = B m b B m . b b b r =0 r =0 The case m = 1 gives Dedekind sums and their reciprocity law. Relations for Barnes Zeta Functions Matthias Beck 8

  16. Hurwitz Zeta Relations Theorem 2 Let a 1 , . . . , a n be pairwise coprime positive integers. Then � n − 1 � n − 1 � ( − 1) n − 1 ( − 1) k ζ ( s ; x, a ) = B n − 1 − k ( x ; a ) ζ ( s − k ; x ) ( n − 1)! k k =0 � � a j − 1 n � � s ; x + r a − s + σ − r ( a 1 , . . . , � a j , . . . , a n ; a j ) ζ . j a j j =1 r =0 Corollary [ a = (1 , 1 , . . . , 1) ] � n − 1 � n − 1 � ζ n ( s ; x ) = ( − 1) n − 1 B ( n ) ( − 1) k n − 1 − k ( x ) ζ ( s − k ; x ) ( n − 1)! k k =0 Relations for Barnes Zeta Functions Matthias Beck 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend