derivatives and special values of higher order tornheim
play

Derivatives and special values of higher-order Tornheim zeta - PowerPoint PPT Presentation

Derivatives and special values of higher-order Tornheim zeta functions Karl Dilcher Dalhousie University Number Theory Seminar June 6, 2018 Karl Dilcher Tornheim zeta function Joint work with Hayley Tomkins (University of Ottawa; formerly


  1. 2. Some special functions For each s ∈ C , the polylogarithm of order s is defined by ∞ z n � Li s ( z ) := ( | z | < 1 ) . n s n = 1 Special cases: z Li 0 ( z ) = 1 − z , Li 1 ( z ) = − log ( 1 − z ) , Li s ( 1 ) = ζ ( s ) ( Re ( s ) > 1 ) . Lemma For s ∈ C \ N , and for | log z | < 2 π , ∞ ζ ( s − m ) log m z � + Γ( 1 − s )( − log z ) s − 1 . Li s ( z ) = m ! m = 0 Karl Dilcher Tornheim zeta function

  2. • This is a well-known representation; Karl Dilcher Tornheim zeta function

  3. • This is a well-known representation; • There is a (more complicated) variant that holds also for s ∈ N . Karl Dilcher Tornheim zeta function

  4. • This is a well-known representation; • There is a (more complicated) variant that holds also for s ∈ N . Connection with Tornheim zeta function: Lemma For t > 0 and r , s > 1 , � ∞ x t − 1 Li r ( e − x ) Li s ( e − x ) d x . Γ( t ) W ( r , s , t ) = 0 Karl Dilcher Tornheim zeta function

  5. • This is a well-known representation; • There is a (more complicated) variant that holds also for s ∈ N . Connection with Tornheim zeta function: Lemma For t > 0 and r , s > 1 , � ∞ x t − 1 Li r ( e − x ) Li s ( e − x ) d x . Γ( t ) W ( r , s , t ) = 0 Proof: Use Euler’s integral for Γ( s ) with an easy substitution: � ∞ Γ( s ) = n s e − nx x s − 1 d x . 0 Replace s by t and n by n + m : Karl Dilcher Tornheim zeta function

  6. � ∞ 1 1 x t − 1 e − ( n + m ) x d x ( n + m ) t = ( Re ( t ) > 0 ) . Γ( t ) 0 Karl Dilcher Tornheim zeta function

  7. � ∞ 1 1 x t − 1 e − ( n + m ) x d x ( n + m ) t = ( Re ( t ) > 0 ) . Γ( t ) 0 Plug into definition of W ( r , s , t ) and change order of summation and integration (legitimate): � ∞ � � ∞ � ∞ � e − nx e − mx 1 � � x t − 1 W ( r , s , t ) = d x n r m s Γ( t ) 0 n = 1 m = 1 � ∞ 1 x t − 1 Li r ( e − x ) Li s ( e − x ) d x . = Γ( t ) 0 QED Karl Dilcher Tornheim zeta function

  8. 3. Crandall’s free parameter formula The main tool for our results is a remarkable identity due to Richard Crandall (1947–2012). Karl Dilcher Tornheim zeta function

  9. 3. Crandall’s free parameter formula The main tool for our results is a remarkable identity due to Richard Crandall (1947–2012). Karl Dilcher Tornheim zeta function

  10. It uses a free parameter and is convenient for both • theoretical results, and • computations. Karl Dilcher Tornheim zeta function

  11. It uses a free parameter and is convenient for both • theoretical results, and • computations. We first need another special function: The (upper) incomplete Gamma function is defined by � ∞ y a − 1 e − y d y . Γ( a , z ) := z Karl Dilcher Tornheim zeta function

  12. It uses a free parameter and is convenient for both • theoretical results, and • computations. We first need another special function: The (upper) incomplete Gamma function is defined by � ∞ y a − 1 e − y d y . Γ( a , z ) := z Obviously, Γ( a , 0 ) = Γ( a ) . Karl Dilcher Tornheim zeta function

  13. Theorem (Crandall) Let r , s , t be complex variables with r �∈ N and s �∈ N . Then for any real θ > 0 we have Γ( t , ( m + n ) θ ) � Γ( t ) W ( r , s , t ) = m r n s ( m + n ) t m , n ≥ 1 ( − 1 ) u + v ζ ( r − u ) ζ ( s − v ) θ u + v + t � + u ! v !( u + v + t ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ r + q + t − 1 � + Γ( 1 − r ) q !( r + q + t − 1 ) q ≥ 0 ( − 1 ) q ζ ( r − q ) θ s + q + t − 1 � + Γ( 1 − s ) q !( s + q + t − 1 ) q ≥ 0 θ r + s + t − 2 + Γ( 1 − r )Γ( 1 − s ) r + s + t − 2 . Karl Dilcher Tornheim zeta function

  14. Remarks: 1. Identity looks complicated at first, but is remarkably useful. Karl Dilcher Tornheim zeta function

  15. Remarks: 1. Identity looks complicated at first, but is remarkably useful. 2. r ∈ N and s ∈ N must be exluded since this would lead to ζ ( 1 ) and Γ( z ) at negative integers. Karl Dilcher Tornheim zeta function

  16. Remarks: 1. Identity looks complicated at first, but is remarkably useful. 2. r ∈ N and s ∈ N must be exluded since this would lead to ζ ( 1 ) and Γ( z ) at negative integers. 3. However, these singularities cancel, and a careful analysis gives a (more complicated) identity valid for all r , s , t ∈ C . Karl Dilcher Tornheim zeta function

  17. Remarks: 1. Identity looks complicated at first, but is remarkably useful. 2. r ∈ N and s ∈ N must be exluded since this would lead to ζ ( 1 ) and Γ( z ) at negative integers. 3. However, these singularities cancel, and a careful analysis gives a (more complicated) identity valid for all r , s , t ∈ C . 4. This, and the above theorem, gives another analytic continuation to all of C 3 , with the exception of the known singularities. Karl Dilcher Tornheim zeta function

  18. Sketch of proof: Use defining integral of Γ( a , z ) . A simple substitution gives � ∞ x t − 1 e − ( m + n ) x d x = Γ( t , ( m + n ) θ ) . ( m + n ) t θ Karl Dilcher Tornheim zeta function

  19. Sketch of proof: Use defining integral of Γ( a , z ) . A simple substitution gives � ∞ x t − 1 e − ( m + n ) x d x = Γ( t , ( m + n ) θ ) . ( m + n ) t θ Use same argument as in the 2nd Lemma; break up integral: �� θ � ∞ 1 � � x t − 1 e − ( m + n ) x d x Γ( t ) W ( r , s , t ) = + m r n s 0 θ m , n ≥ 1 � θ Γ( t , ( m + n ) θ ) � x t − 1 Li r ( e − x ) Li s ( e − x ) d x . = m r n s ( m + n ) t + 0 m , n ≥ 1 Karl Dilcher Tornheim zeta function

  20. Sketch of proof: Use defining integral of Γ( a , z ) . A simple substitution gives � ∞ x t − 1 e − ( m + n ) x d x = Γ( t , ( m + n ) θ ) . ( m + n ) t θ Use same argument as in the 2nd Lemma; break up integral: �� θ � ∞ 1 � � x t − 1 e − ( m + n ) x d x Γ( t ) W ( r , s , t ) = + m r n s 0 θ m , n ≥ 1 � θ Γ( t , ( m + n ) θ ) � x t − 1 Li r ( e − x ) Li s ( e − x ) d x . = m r n s ( m + n ) t + 0 m , n ≥ 1 Use the first Lemma, namely ζ ( s − m ) log m z ∞ � + Γ( 1 − s )( − log z ) s − 1 . Li s ( z ) = m ! m = 0 Karl Dilcher Tornheim zeta function

  21. Sketch of proof: Use defining integral of Γ( a , z ) . A simple substitution gives � ∞ x t − 1 e − ( m + n ) x d x = Γ( t , ( m + n ) θ ) . ( m + n ) t θ Use same argument as in the 2nd Lemma; break up integral: �� θ � ∞ 1 � � x t − 1 e − ( m + n ) x d x Γ( t ) W ( r , s , t ) = + m r n s 0 θ m , n ≥ 1 � θ Γ( t , ( m + n ) θ ) � x t − 1 Li r ( e − x ) Li s ( e − x ) d x . = m r n s ( m + n ) t + 0 m , n ≥ 1 Use the first Lemma, namely ζ ( s − m ) log m z ∞ � + Γ( 1 − s )( − log z ) s − 1 . Li s ( z ) = m ! m = 0 Expand and then integrate. QED Karl Dilcher Tornheim zeta function

  22. First application: Set r = s = t ; then Γ( s , ( m + n ) θ ) � Γ( s ) ω 3 ( s ) = ( mn ( m + n )) s m , n ≥ 1 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 � + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 0 + Γ( 1 − s ) s θ 3 s − 2 3 s − 2 . Karl Dilcher Tornheim zeta function

  23. First application: Set r = s = t ; then Γ( s , ( m + n ) θ ) � Γ( s ) ω 3 ( s ) = ( mn ( m + n )) s m , n ≥ 1 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 � + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 0 + Γ( 1 − s ) s θ 3 s − 2 3 s − 2 . Fix θ > 0, multiply both sides by s and let s → 0. Karl Dilcher Tornheim zeta function

  24. First application: Set r = s = t ; then Γ( s , ( m + n ) θ ) � Γ( s ) ω 3 ( s ) = ( mn ( m + n )) s m , n ≥ 1 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 � + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 0 + Γ( 1 − s ) s θ 3 s − 2 3 s − 2 . Fix θ > 0, multiply both sides by s and let s → 0. LHS: s Γ( s ) → 1. Karl Dilcher Tornheim zeta function

  25. First application: Set r = s = t ; then Γ( s , ( m + n ) θ ) � Γ( s ) ω 3 ( s ) = ( mn ( m + n )) s m , n ≥ 1 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 � + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 0 + Γ( 1 − s ) s θ 3 s − 2 3 s − 2 . Fix θ > 0, multiply both sides by s and let s → 0. LHS: s Γ( s ) → 1. RHS: Almost all terms disappear, except Karl Dilcher Tornheim zeta function

  26. First application: Set r = s = t ; then Γ( s , ( m + n ) θ ) � Γ( s ) ω 3 ( s ) = ( mn ( m + n )) s m , n ≥ 1 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 � + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 0 + Γ( 1 − s ) s θ 3 s − 2 3 s − 2 . Fix θ > 0, multiply both sides by s and let s → 0. LHS: s Γ( s ) → 1. RHS: Almost all terms disappear, except – 2nd row for u = v = 0; get ζ ( 0 ) 2 = ( − 1 / 2 ) 2 = 1 / 4; Karl Dilcher Tornheim zeta function

  27. First application: Set r = s = t ; then Γ( s , ( m + n ) θ ) � Γ( s ) ω 3 ( s ) = ( mn ( m + n )) s m , n ≥ 1 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 � + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 0 + Γ( 1 − s ) s θ 3 s − 2 3 s − 2 . Fix θ > 0, multiply both sides by s and let s → 0. LHS: s Γ( s ) → 1. RHS: Almost all terms disappear, except – 2nd row for u = v = 0; get ζ ( 0 ) 2 = ( − 1 / 2 ) 2 = 1 / 4; – 3rd row for q = 1; get 2 Γ( 0 )( − 1 ) ζ ( − 1 ) / 2 = − ζ ( − 1 ) = 1 / 12. Karl Dilcher Tornheim zeta function

  28. First application: Set r = s = t ; then Γ( s , ( m + n ) θ ) � Γ( s ) ω 3 ( s ) = ( mn ( m + n )) s m , n ≥ 1 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 � + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 0 + Γ( 1 − s ) s θ 3 s − 2 3 s − 2 . Fix θ > 0, multiply both sides by s and let s → 0. LHS: s Γ( s ) → 1. RHS: Almost all terms disappear, except – 2nd row for u = v = 0; get ζ ( 0 ) 2 = ( − 1 / 2 ) 2 = 1 / 4; – 3rd row for q = 1; get 2 Γ( 0 )( − 1 ) ζ ( − 1 ) / 2 = − ζ ( − 1 ) = 1 / 12. Together: ω 3 ( 0 ) = 1 / 3. Karl Dilcher Tornheim zeta function

  29. Remarks: 1. This last identity also immediately gives the singularities of ω 3 ( s ) and their residues. Karl Dilcher Tornheim zeta function

  30. Remarks: 1. This last identity also immediately gives the singularities of ω 3 ( s ) and their residues. 2. With only a small variation we can prove a more general result: Define ω 3 ( s ; τ ) := W ( s , s , τ s ) . Karl Dilcher Tornheim zeta function

  31. Remarks: 1. This last identity also immediately gives the singularities of ω 3 ( s ) and their residues. 2. With only a small variation we can prove a more general result: Define ω 3 ( s ; τ ) := W ( s , s , τ s ) . Then for any τ > 0 we have τ + 1 ζ ( − 1 ) = 1 2 τ 5 τ + 3 ω 3 ( 0 ; τ ) = ζ ( 0 ) 2 − τ + 1 , 12 Karl Dilcher Tornheim zeta function

  32. Remarks: 1. This last identity also immediately gives the singularities of ω 3 ( s ) and their residues. 2. With only a small variation we can prove a more general result: Define ω 3 ( s ; τ ) := W ( s , s , τ s ) . Then for any τ > 0 we have τ + 1 ζ ( − 1 ) = 1 2 τ 5 τ + 3 ω 3 ( 0 ; τ ) = ζ ( 0 ) 2 − τ + 1 , 12 and in particular, ω 3 ( 0 ) = ω 3 ( 0 ; 1 ) = 1 3 . Karl Dilcher Tornheim zeta function

  33. 4. Derivative at the origin Let’s return to Crandall’s identity; multiply both sides by s :  Γ( s , ( m + n ) θ )  � s Γ( s ) ω 3 ( s ) = s ( mn ( m + n )) s m , n ≥ 1 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 � + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 0 +Γ( 1 − s ) s θ 3 s − 2 � . 3 s − 2 Karl Dilcher Tornheim zeta function

  34. 4. Derivative at the origin Let’s return to Crandall’s identity; multiply both sides by s :  Γ( s , ( m + n ) θ )  � s Γ( s ) ω 3 ( s ) = s ( mn ( m + n )) s m , n ≥ 1 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 � + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 0 +Γ( 1 − s ) s θ 3 s − 2 � . 3 s − 2 Now isolate the singularies in s in the large brackets on the RHS; bring them to the left: Karl Dilcher Tornheim zeta function

  35. s Γ( s ) ω 3 ( s ) − ζ ( s ) 2 θ 2 + Γ( 1 − s ) ζ ( s − 1 ) θ 2 s  Γ( s , ( m + n ) θ )  � = s ( mn ( m + n )) s m , n ≥ 1 + 2 Γ( 1 − s ) ζ ( s ) θ 2 s − 1 2 s − 1 + Γ( 1 − s ) 2 θ 3 s − 2 3 s − 2 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( u , v ) � =( 0 , 0 )  ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 �  . + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 2 Karl Dilcher Tornheim zeta function

  36. s Γ( s ) ω 3 ( s ) − ζ ( s ) 2 θ 2 + Γ( 1 − s ) ζ ( s − 1 ) θ 2 s  Γ( s , ( m + n ) θ )  � = s ( mn ( m + n )) s m , n ≥ 1 + 2 Γ( 1 − s ) ζ ( s ) θ 2 s − 1 2 s − 1 + Γ( 1 − s ) 2 θ 3 s − 2 3 s − 2 ( − 1 ) u + v ζ ( s − u ) ζ ( s − v ) θ u + v + s � + u ! v !( u + v + s ) u , v ≥ 0 ( u , v ) � =( 0 , 0 )  ( − 1 ) q ζ ( s − q ) θ 2 s + q − 1 �  . + 2 Γ( 1 − s ) q !( 2 s + q − 1 ) q ≥ 2 Derivative at s = 0 of LHS becomes ω ′ 3 ( 0 ) − 5 12 γ − 1 2 log 2 π − 5 12 log θ + ζ ′ ( − 1 ) . Karl Dilcher Tornheim zeta function

  37. Derivative at s = 0 of RHS amounts to evaluating [ . . . ] at s = 0. Karl Dilcher Tornheim zeta function

  38. Derivative at s = 0 of RHS amounts to evaluating [ . . . ] at s = 0. Since θ > 0 is a free variable, we consider θ → 0. Karl Dilcher Tornheim zeta function

  39. Derivative at s = 0 of RHS amounts to evaluating [ . . . ] at s = 0. Since θ > 0 is a free variable, we consider θ → 0. There are singularities at θ = 0; however, they cancel. Karl Dilcher Tornheim zeta function

  40. Derivative at s = 0 of RHS amounts to evaluating [ . . . ] at s = 0. Since θ > 0 is a free variable, we consider θ → 0. There are singularities at θ = 0; however, they cancel. Some key ingredients: � ∞ du � Γ( 0 , ( m + n ) θ ) = ( e θ u − 1 ) 2 u . 1 m , n ≥ 1 (Easy manipulation using definition of Γ( a , z ) ). Karl Dilcher Tornheim zeta function

  41. Derivative at s = 0 of RHS amounts to evaluating [ . . . ] at s = 0. Since θ > 0 is a free variable, we consider θ → 0. There are singularities at θ = 0; however, they cancel. Some key ingredients: � ∞ du � Γ( 0 , ( m + n ) θ ) = ( e θ u − 1 ) 2 u . 1 m , n ≥ 1 (Easy manipulation using definition of Γ( a , z ) ). � ∞ t α − 1 ( e t − 1 ) 2 dt = Γ( α )( ζ ( α − 1 ) − ζ ( α )) ( Re ( α ) > 2 ) . 0 (An integral in Gradshteyn & Ryzhik). Karl Dilcher Tornheim zeta function

  42. Everything put together, we get (after some work) � Γ( 0 , ( m + n ) θ ) m , n ≥ 1 = 1 2 log ( 2 π ) − 5 γ 12 + ζ ′ ( − 1 ) − 1 2 θ 2 − 5 1 θ + 12 log θ + O ( θ ) . Karl Dilcher Tornheim zeta function

  43. Everything put together, we get (after some work) � Γ( 0 , ( m + n ) θ ) m , n ≥ 1 = 1 2 log ( 2 π ) − 5 γ 12 + ζ ′ ( − 1 ) − 1 2 θ 2 − 5 1 θ + 12 log θ + O ( θ ) . Finally: Theorem ω ′ 3 ( 0 ) = log ( 2 π ) . Karl Dilcher Tornheim zeta function

  44. Everything put together, we get (after some work) � Γ( 0 , ( m + n ) θ ) m , n ≥ 1 = 1 2 log ( 2 π ) − 5 γ 12 + ζ ′ ( − 1 ) − 1 2 θ 2 − 5 1 θ + 12 log θ + O ( θ ) . Finally: Theorem ω ′ 3 ( 0 ) = log ( 2 π ) . As before, with small modifications we get more generally 3 ( 0 ; τ ) = τ + 1 log ( 2 π ) + ( τ − 1 ) τ ω ′ ζ ′ ( − 1 ) . 2 τ + 1 (Recall: ω 3 ( s ; τ ) := W ( s , s , τ s ) .) Karl Dilcher Tornheim zeta function

  45. 5. Extensions 1. A multi-dimensional analogue: For n ≥ 2 define 1 � W ( r 1 , . . . , r n , t ) := m r 1 1 . . . m r n n ( m 1 + . . . m n ) t m 1 ,..., m n ≥ 1 Studied by Matsumoto (2000), Bailey & Borwein (2015), and others. Karl Dilcher Tornheim zeta function

  46. 5. Extensions 1. A multi-dimensional analogue: For n ≥ 2 define 1 � W ( r 1 , . . . , r n , t ) := m r 1 1 . . . m r n n ( m 1 + . . . m n ) t m 1 ,..., m n ≥ 1 Studied by Matsumoto (2000), Bailey & Borwein (2015), and others. In analogy to before, define ω n + 1 ( s ) := W ( s , . . . , s , s ) . Karl Dilcher Tornheim zeta function

  47. 5. Extensions 1. A multi-dimensional analogue: For n ≥ 2 define 1 � W ( r 1 , . . . , r n , t ) := m r 1 1 . . . m r n n ( m 1 + . . . m n ) t m 1 ,..., m n ≥ 1 Studied by Matsumoto (2000), Bailey & Borwein (2015), and others. In analogy to before, define ω n + 1 ( s ) := W ( s , . . . , s , s ) . Hayley Tomkins (honours thesis, 2016) showed that ω n + 1 ( 0 ) = ( − 1 ) n n + 1 holds for n ≤ 7, and conjectured that it is true for all n . Karl Dilcher Tornheim zeta function

  48. Meanwhile proved, using higher-order convolution identities for Bernoulli numbers and polynomials. (Joint with Armin Straub, 2016, unpublished). Karl Dilcher Tornheim zeta function

  49. Meanwhile proved, using higher-order convolution identities for Bernoulli numbers and polynomials. (Joint with Armin Straub, 2016, unpublished). A more complicated convolution identity shows that ω n + 1 ( − k ) = 0 for all integers n ≥ 2 and k ≥ 1. Karl Dilcher Tornheim zeta function

  50. Meanwhile proved, using higher-order convolution identities for Bernoulli numbers and polynomials. (Joint with Armin Straub, 2016, unpublished). A more complicated convolution identity shows that ω n + 1 ( − k ) = 0 for all integers n ≥ 2 and k ≥ 1. This is analogous to the zeta function identity ζ ( − k ) = 0 for k = 2 , 4 , 6 , . . . . Karl Dilcher Tornheim zeta function

  51. Also proved by Tomkins: ω ′ 4 ( 0 ) = − log ( 2 π ) + ζ ′ ( − 2 ) = − log ( 2 π ) − ζ ( 3 ) 4 π 2 . Karl Dilcher Tornheim zeta function

  52. Also proved by Tomkins: ω ′ 4 ( 0 ) = − log ( 2 π ) + ζ ′ ( − 2 ) = − log ( 2 π ) − ζ ( 3 ) 4 π 2 . How about ω ′ n + 1 ( 0 ) for n ≥ 4? Karl Dilcher Tornheim zeta function

  53. Recall: ω ′ 3 ( 0 ) = log ( 2 π ) , ω ′ 4 ( 0 ) = − log ( 2 π ) + ζ ′ ( − 2 ) . Karl Dilcher Tornheim zeta function

  54. Recall: ω ′ 3 ( 0 ) = log ( 2 π ) , ω ′ 4 ( 0 ) = − log ( 2 π ) + ζ ′ ( − 2 ) . Bailey & Borwein found experimentally: ω ′ 5 ( 0 ) = log ( 2 π ) − 2 ζ ′ ( − 2 ) ω ′ 6 ( 0 ) = − log ( 2 π ) + 35 12 ζ ′ ( − 2 ) + 1 12 ζ ′ ( − 4 ) ω ′ 7 ( 0 ) = log ( 2 π ) − 15 4 ζ ′ ( − 2 ) − 1 4 ζ ′ ( − 4 ) . . . ω ′ 33633600 ζ ′ ( − 2 ) − . . . − 1162377216000 ζ ′ ( − 16 ) . 19 ( 0 ) = log ( 2 π ) − 344499373 1 Karl Dilcher Tornheim zeta function

  55. Recall: ω ′ 3 ( 0 ) = log ( 2 π ) , ω ′ 4 ( 0 ) = − log ( 2 π ) + ζ ′ ( − 2 ) . Bailey & Borwein found experimentally: ω ′ 5 ( 0 ) = log ( 2 π ) − 2 ζ ′ ( − 2 ) ω ′ 6 ( 0 ) = − log ( 2 π ) + 35 12 ζ ′ ( − 2 ) + 1 12 ζ ′ ( − 4 ) ω ′ 7 ( 0 ) = log ( 2 π ) − 15 4 ζ ′ ( − 2 ) − 1 4 ζ ′ ( − 4 ) . . . ω ′ 33633600 ζ ′ ( − 2 ) − . . . − 1162377216000 ζ ′ ( − 16 ) . 19 ( 0 ) = log ( 2 π ) − 344499373 1 What are the coefficients in these expressions? Karl Dilcher Tornheim zeta function

  56. Theorem For any n ≥ 2 we have ⌊ n − 1 2 ⌋ n + 1 ( 0 ) = ( − 1 ) n log ( 2 π ) + ω ′ � s ( n , 2 j + 1 ) ζ ′ ( − 2 j ) , 2 ( n − 1 )! j = 1 where s ( n , k ) are the Stirling numbers of the first kind. Karl Dilcher Tornheim zeta function

  57. Theorem For any n ≥ 2 we have ⌊ n − 1 2 ⌋ n + 1 ( 0 ) = ( − 1 ) n log ( 2 π ) + ω ′ � s ( n , 2 j + 1 ) ζ ′ ( − 2 j ) , 2 ( n − 1 )! j = 1 where s ( n , k ) are the Stirling numbers of the first kind. (Note: ζ ′ ( 0 ) = − 1 2 log ( 2 π ) ). Karl Dilcher Tornheim zeta function

  58. Theorem For any n ≥ 2 we have ⌊ n − 1 2 ⌋ n + 1 ( 0 ) = ( − 1 ) n log ( 2 π ) + ω ′ � s ( n , 2 j + 1 ) ζ ′ ( − 2 j ) , 2 ( n − 1 )! j = 1 where s ( n , k ) are the Stirling numbers of the first kind. (Note: ζ ′ ( 0 ) = − 1 2 log ( 2 π ) ). Proof uses similar methods as that of the original case n = 2. Karl Dilcher Tornheim zeta function

  59. Theorem For any n ≥ 2 we have ⌊ n − 1 2 ⌋ n + 1 ( 0 ) = ( − 1 ) n log ( 2 π ) + ω ′ � s ( n , 2 j + 1 ) ζ ′ ( − 2 j ) , 2 ( n − 1 )! j = 1 where s ( n , k ) are the Stirling numbers of the first kind. (Note: ζ ′ ( 0 ) = − 1 2 log ( 2 π ) ). Proof uses similar methods as that of the original case n = 2. Recall: n s ( n , k ) x k = x ( x − 1 ) . . . ( x − n + 1 ); � k = 0 Karl Dilcher Tornheim zeta function

  60. Theorem For any n ≥ 2 we have ⌊ n − 1 2 ⌋ n + 1 ( 0 ) = ( − 1 ) n log ( 2 π ) + ω ′ � s ( n , 2 j + 1 ) ζ ′ ( − 2 j ) , 2 ( n − 1 )! j = 1 where s ( n , k ) are the Stirling numbers of the first kind. (Note: ζ ′ ( 0 ) = − 1 2 log ( 2 π ) ). Proof uses similar methods as that of the original case n = 2. Recall: n s ( n , k ) x k = x ( x − 1 ) . . . ( x − n + 1 ); � k = 0 s ( n , k ) = s ( n − 1 , k − 1 ) − ( n − 1 ) s ( n − 1 , k ) . Karl Dilcher Tornheim zeta function

  61. 2. Character analogues Introduced and studied by Bailey & Borwein (Math. Comp. 2016). Karl Dilcher Tornheim zeta function

  62. 2. Character analogues Introduced and studied by Bailey & Borwein (Math. Comp. 2016). Easiest case: Alternating Tornheim zeta function, defined by ( − 1 ) m ( − 1 ) n 1 � A ( r , s , t ) := ( m + n ) t . m r n s m , n ≥ 1 Karl Dilcher Tornheim zeta function

  63. 2. Character analogues Introduced and studied by Bailey & Borwein (Math. Comp. 2016). Easiest case: Alternating Tornheim zeta function, defined by ( − 1 ) m ( − 1 ) n 1 � A ( r , s , t ) := ( m + n ) t . m r n s m , n ≥ 1 In analogy to ω 3 ( s ) , consider α 3 ( s ) := A ( s , s , s ) . Karl Dilcher Tornheim zeta function

  64. 2. Character analogues Introduced and studied by Bailey & Borwein (Math. Comp. 2016). Easiest case: Alternating Tornheim zeta function, defined by ( − 1 ) m ( − 1 ) n 1 � A ( r , s , t ) := ( m + n ) t . m r n s m , n ≥ 1 In analogy to ω 3 ( s ) , consider α 3 ( s ) := A ( s , s , s ) . Analogue to Crandall’s formula is much simpler: ( − 1 ) m ( − 1 ) n Γ( s , ( m + n ) θ ) � Γ( s ) α 3 ( s ) = m r n s ( m + n ) s m , n ≥ 1 ( − 1 ) u + v η ( s − u ) η ( s − v ) θ u + v + s � + . u ! v !( u + v + s ) u , v ≥ 0 Karl Dilcher Tornheim zeta function

  65. Here ∞ ( − 1 ) n + 1 � = ( 1 − 2 1 − s ) ζ ( s ) η ( s ) := n s n = 1 is the alternating zeta function. Karl Dilcher Tornheim zeta function

  66. Here ∞ ( − 1 ) n + 1 � = ( 1 − 2 1 − s ) ζ ( s ) η ( s ) := n s n = 1 is the alternating zeta function. Some special values: 2 log π η ′ ( 0 ) = 1 η ( 1 ) = − log 2 , 2 . Karl Dilcher Tornheim zeta function

  67. Here ∞ ( − 1 ) n + 1 � = ( 1 − 2 1 − s ) ζ ( s ) η ( s ) := n s n = 1 is the alternating zeta function. Some special values: 2 log π η ′ ( 0 ) = 1 η ( 1 ) = − log 2 , 2 . Following same procedure as before, we find α 3 ( 0 ) = η ( 0 ) 2 = 1 4 . Karl Dilcher Tornheim zeta function

  68. Here ∞ ( − 1 ) n + 1 � = ( 1 − 2 1 − s ) ζ ( s ) η ( s ) := n s n = 1 is the alternating zeta function. Some special values: 2 log π η ′ ( 0 ) = 1 η ( 1 ) = − log 2 , 2 . Following same procedure as before, we find α 3 ( 0 ) = η ( 0 ) 2 = 1 4 . Furthermore, using methods of before: α ′ 3 ( 0 ) = 2 η ′ ( 0 ) − η ′ ( − 1 ) − 1 4 γ 4 γ + 3 ζ ′ ( − 1 ) . = log ( 2 π ) − 5 3 log 2 − 1 Karl Dilcher Tornheim zeta function

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend