asymptotic analysis of random matrices and orthogonal
play

Asymptotic Analysis of Random Matrices and Orthogonal Polynomials - PowerPoint PPT Presentation

Asymptotic Analysis of Random Matrices and Orthogonal Polynomials Arno Kuijlaars University of Leuven, Belgium Les Houches, 5-9 March 2012 Multiple orthogonal polynomials Given weight functions w 1 , . . . , w r on the real line n = ( n 1 , . .


  1. Asymptotic Analysis of Random Matrices and Orthogonal Polynomials Arno Kuijlaars University of Leuven, Belgium Les Houches, 5-9 March 2012

  2. Multiple orthogonal polynomials Given weight functions w 1 , . . . , w r on the real line n = ( n 1 , . . . , n r ) ∈ N r . Notation | � and � n | = n 1 + · · · + n r The type II multiple orthogonal polynomial (MOP) is a monic polynomial P � n of degree | � n | such that  � n ( x ) x k w 1 ( x ) dx = 0 ,  k = 0 , 1 , . . . , n 1 − 1 , P �     �    n ( x ) x k w 2 ( x ) dx = 0 , P � k = 0 , 1 , . . . , n 2 − 1 ,  . . . .   . . ,   �    n ( x ) x k w r ( x ) dx = 0 , P � k = 0 , 1 , . . . , n r − 1 ,   These are | � n | conditions for the | � n | free coefficients of P � n . In typical cases there is existence and uniqueness, but not always.

  3. Type I multiple orthogonality Type I multiple orthogonal polynomials are r polynomials A (1) n , A (2) n , · · · A ( r ) n , of degrees � � � deg A ( j ) n ≤ n j − 1 , j = 1 , . . . , r � They are such that the linear form n ( x ) = A (1) n ( x ) w 1 ( x ) + · · · + A ( r ) n ( x ) w r ( x ) Q � � � satisfies �  x k Q � n ( x ) dx = 0 , k = 0 , 1 , . . . , | � n | − 2 ,   � x k Q �  n ( x ) dx = 1 , k = | � n | − 1 . 

  4. Block Hankel matrix � Moments µ ( i ) x j w i ( x ) dx = j n × m Hankel matrix for i th weight � � µ ( i ) H ( i ) n , m = j + k − 2 j =1 ,..., n , k =1 ,..., m Block Hankel matrix � � H (1) H ( r ) n = , n = | � n | H � · · · n , n 1 n , n r Conditions for type I MOPs give linear system with matrix H � n . Conditions for type II MOP give linear system with matrix H T n . � Both type of MOPs exist if and only if det H � n � = 0 .

  5. Riemann-Hilbert problem (case r = 2) In the RH problem we look for a 3 × 3 matrix valued function Y ( z ) satisfying RH-Y1 Y : C \ R → C 3 × 3 is analytic. RH-Y2 Y has boundary values for x ∈ R , denoted by Y ± ( x ) , and   1 w 1 ( x ) w 2 ( x )  , Y + ( x ) = Y − ( x ) 0 1 0 for x ∈ R .  0 0 1 RH-Y3 As z → ∞ , ��   z n 1 + n 2 0 0 � � 1 z − n 1 Y ( z ) = I + O 0 0   z z − n 2 0 0

  6. Solution in terms of type II MOPs Theorem ( Van Assche, Geronimo, K (2001)) RH problem has a unique solution if and only if the type II MOP P � n uniquely exists. In that case the first row of Y is given by � ∞ � ∞   1 P � n ( s ) w 1 ( s ) 1 P � n ( s ) w 2 ( s ) P � n ( z ) ds ds 2 π i s − z 2 π i s − z   −∞ −∞     ∗ ∗ ∗   ∗ ∗ ∗ Other rows are filled using P � e 1 and P � e 2 (if they n − � n − � exist).

  7. Inverse of Y The type I MOPs are in the inverse of Y . � ∞   Q � n ( s ) − s − z ds ∗ ∗   −∞   Y − 1 ( z ) =   2 π iA (1) n ( z ) ∗ ∗   �   2 π iA (2) n ( z ) ∗ ∗ � n = A (1) n w 1 + A (2) where Q � n w 2 � � Other columns contain type I MOPs with multi-indices � n + � e 1 and � n + � e 2 .

  8. Biorthogonal ensembles Probability density function on R n of the form 1 det [ f i ( x j )] n i , j =1 · det [ g i ( x j )] n i , j =1 , Z n Normalization constant � R n det [ f i ( x j )] n i , j =1 · det [ g i ( x j )] n Z n = i , j =1 dx 1 · · · dx n � = 0 By Andr´ eief (1883) identity �� ∞ � n Z n = n ! det M n , M n = f i ( x ) g j ( x ) dx −∞ i , j =1 Corollary: det M n � = 0

  9. Correlation kernel Biorthogonal ensemble is a determinantal point process with correlation kernel n n � � � � M − 1 K n ( x , y ) = ji f i ( x ) g j ( y ) . n i =1 j =1 Representation as determinant   f 1 ( x ) . 1 M n . .   K n ( x , y ) = − det   det M n f n ( x ) 0 g 1 ( y ) ··· g n ( y ) Perform elementary row and column transformations to transform M n to the identity matrix I n

  10. Correlation kernel (cont.) After transformation M n �→ I n   φ 1 ( x ) . I n . .   K n ( x , y ) = − det   φ n ( x ) 0 ψ 1 ( y ) ··· ψ n ( y ) with functions φ j and ψ j satisfying � ∞ φ i ( x ) ψ j ( x ) dx = δ i , j (biorthogonality) −∞ n � Also single sum K n ( x , y ) = φ j ( x ) ψ j ( y ) j =1

  11. Correlation kernel (cont.) Characterization: K n is the kernel of the projection operator onto the linear span of f 1 , . . . , f n , whose kernel is the orthogonal complement of the linear span of g 1 , . . . , g n . Operator � K n : h �→ K n h , K n h ( x ) = K n ( x , y ) h ( y ) dy Characterization K n h = h if h = α 1 f 1 + α 2 f 2 + · · · + α n f n , � K n h = 0 if h ( x ) g j ( x ) dx = 0 for j = 1 , . . . , n .

  12. MOP ensembles Definition A multiple orthogonal polynomial (MOP) ensemble is a biorthogonal ensemble with functions f i ( x ) = x i − 1 , for i = 1 , . . . , n , g i ( y ) = y i − 1 w 1 ( y ) , for i = 1 , . . . , n 1 , g n 1 + i ( y ) = y i − 1 w 2 ( y ) , for i = 1 , . . . , n 2 , . . . g n 1 + ··· + n r − 1 + i ( y ) = y i − 1 w r ( y ) , for i = 1 , . . . , n r . Here w 1 , . . . , w r are given functions, and n 1 , . . . , n r are non-negative integers such that n = n 1 + · · · + n r .

  13. Block Hankel matrix In a MOP ensemble the matrix M n is the block Hankel matrix � � H (1) H ( r ) M n = H � n = , n = | � n | · · · n , n 1 n , n r det H � n � = 0 and so the MOPs exist. The RH problem has a unique solution.

  14. Christoffel Darboux formula Theorem (Bleher-K (2004) for r = 2, Daems-K (2004)) The correlation kernel K n for the MOP ensemble is given by 1 K n ( x , y ) = 2 π i ( x − y ) ×   1 0   � � Y − 1   0 w 1 ( y ) · · · w r ( y ) + ( y ) Y + ( x ) .   . .   0

  15. Proof for case r = 2 Assume r = 2 . Let L n ( x , y ) be the right-hand side   1 1 � � Y − 1 L n ( x , y ) = 0 w 1 ( y ) w 2 ( y ) + ( y ) Y + ( x ) 0   2 π i ( x − y ) 0 We show (a) L n h = h if h is a polynomial of degree ≤ n − 1 , � h ( y ) y j − 1 w i ( y ) dy = 0 for j = 1 , . . . , n i , and (b) L n h = 0 if i = 1 , 2 .

  16. Proof of (a) Let h be a polynomial of degree ≤ n − 1 .   1 h ( y ) � � Y − 1 L n ( x , y ) h ( y ) = 0 w 1 ( y ) w 2 ( y ) + ( y ) Y + ( x ) 0   2 π i ( x − y ) 0   1 = h ( y ) − h ( x ) � � Y − 1 0 w 1 ( y ) w 2 ( y ) 0 + ( y ) Y + ( x )   2 π i ( x − y ) 0   1 h ( x ) � � Y − 1 + 0 w 1 ( y ) w 2 ( y ) + ( y ) Y + ( x ) 0   2 π i ( x − y ) 0 � L n ( x , y ) h ( y ) dy splits into two integrals.

  17. Proof of (a), first integral First integral has   1 h ( y ) − h ( x ) � � Y − 1 0 w 1 ( y ) w 2 ( y ) + ( y ) Y + ( x ) 0   2 π i ( x − y ) � �� � 0 � �� � vector with linear forms polynomial in y of type I MOPs of degree ≤ n − 2 Integral with respect to y is 0 for every x because of type I multiple orthogonality.

  18. Proof of (a), second integral Second integral is   1 � ∞ h ( x ) dy � � Y − 1 0 w 1 ( y ) w 2 ( y ) + ( y ) Y + ( x ) 0   2 π i x − y −∞ 0 From jump condition in RH problem � � � � � � Y − 1 Y − 1 − ( y ) − Y − 1 0 w 1 ( y ) w 2 ( y ) 1 0 0 + ( y ) = + ( y ) It remains to prove � ∞ � Y − 1 � − ( y ) − Y − 1 1 + ( y ) Y + ( x ) dy = 1 . 2 π i x − y −∞ 1 , 1

  19. Proof of (a), second integral (cont.) � ∞ � Y − 1 � − ( y ) − Y − 1 1 + ( y ) Y + ( x ) dy = 1 . 2 π i x − y −∞ 1 , 1 Replace x ∈ R by z with Im z > 0 . � � Y − 1 ( y ) y �→ z − y Y ( z ) 1 , 1 is analytic in lower half plane and is O ( y − n − 1 ) as y → ∞ . By Cauchy’s theorem � ∞ � Y − 1 � 1 − ( y ) z − y Y ( z ) dy = 0 2 π i −∞ 1 , 1 � � Y − 1 ( y ) y �→ z − y Y ( z ) 1 , 1 has pole in upper half plane and same behavior at infinity. By residue calculation � ∞ � Y − 1 � 1 + ( y ) z − y Y ( z ) dy = − 1 2 π i −∞ 1 , 1 Subtract the two results and then let z → x ∈ R .

  20. Proof of (b) � h ( y ) y j − 1 w i ( y ) dy = 0 for j = 1 , . . . , n j , Assume i = 1 , 2 . We have to prove L n h ( x ) = 0 We have that L n h ( x ) =   1 � ∞ � Y − 1 + ( y ) − Y − 1 1 + ( x ) �  dy h ( y ) 0 w 1 ( y ) w 2 ( y ) Y + ( x ) 0  2 π i x − y −∞ 0   1 � ∞ � Y − 1 + 1 + ( x ) �  dy . h ( y ) 0 w 1 ( y ) w 2 ( y ) x − y Y + ( x ) 0  2 π i −∞ 0 Second integral is obviously zero.   1 In first integral we can take out Y + ( x ) 0  .  0

  21. Proof of (b), (cont.) We are left to evaluate � ∞ � Y − 1 + ( y ) − Y − 1 1 + ( x ) � h ( y ) 0 w 1 ( y ) w 2 ( y ) dy 2 π i x − y −∞ Second row of Y − 1 has polynomials of degree ≤ n 1 Third row of Y − 1 has polynomials of degree ≤ n 2 Hence for every x , the entries of � Y − 1 + ( y ) − Y − 1 + ( x ) � 0 w 1 ( y ) w 2 ( y ) x − y take the form w 1 ( y )( poly of deg ≤ n 1 − 1)+ w 2 ( y )( poly of deg ≤ n 2 − 1) This is in the linear span of g 1 , . . . , g n and the integral is zero.

  22. Examples of MOP ensembles Non-intersecting Brownian motions Non-intersecting squared Bessel paths Random matrix model with external source Two matrix model

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend