adapting quasi monte carlo methods to simulation problems
play

Adapting quasi-Monte Carlo methods to simulation problems in - PowerPoint PPT Presentation

Adapting quasi-Monte Carlo methods to simulation problems in weighted Korobov spaces Christian Irrgeher joint work with G. Leobacher RICAM Special Semester Workshop 1 Uniform distribution and quasi-Monte Carlo methods October 2013,


  1. Adapting quasi-Monte Carlo methods to simulation problems in weighted Korobov spaces Christian Irrgeher joint work with G. Leobacher RICAM Special Semester – Workshop 1 “Uniform distribution and quasi-Monte Carlo methods” October 2013, Linz Christian Irrgeher (JKU Linz) 1

  2. Problem formulation ◮ Efficient computation of E ( g ( B )) ◮ B . . . standard Brownian motion with index set [0 , T ] ◮ g . . . suitable function Christian Irrgeher (JKU Linz) 2

  3. Problem formulation ◮ Efficient computation of E ( g ( B )) ◮ B . . . standard Brownian motion with index set [0 , T ] ◮ g . . . suitable function ◮ Examples in finance, biology, physics,. . . ◮ e.g.: Financial derivative pricing ◮ Gaussian financial market models ◮ European-style options Christian Irrgeher (JKU Linz) 2

  4. Numerical simulation – quasi-Monte Carlo (QMC) 1. Discretization ◮ E ( g ( B )) ≈ E ( g d ( B T d )) = E ( f d ( X 1 , . . . , X d )) =: I ( f d ) d , . . . , B d T ◮ ( X 1 , . . . , X d ) are independent N (0 , 1) Christian Irrgeher (JKU Linz) 3

  5. Numerical simulation – quasi-Monte Carlo (QMC) 1. Discretization ◮ E ( g ( B )) ≈ E ( g d ( B T d )) = E ( f d ( X 1 , . . . , X d )) =: I ( f d ) d , . . . , B d T ◮ ( X 1 , . . . , X d ) are independent N (0 , 1) 2. QMC integration � N ◮ I ( f d ) ≈ 1 j =1 f d ( x j ) =: Q d,N ( f d ) N ◮ { x 1 , . . . , x N } ⊂ R d deterministic point set Christian Irrgeher (JKU Linz) 3

  6. Numerical simulation – quasi-Monte Carlo (QMC) 1. Discretization ◮ E ( g ( B )) ≈ E ( g d ( B T d )) = E ( f d ( X 1 , . . . , X d )) =: I ( f d ) d , . . . , B d T ◮ ( X 1 , . . . , X d ) are independent N (0 , 1) 2. QMC integration � N ◮ I ( f d ) ≈ 1 j =1 f d ( x j ) =: Q d,N ( f d ) N ◮ { x 1 , . . . , x N } ⊂ R d deterministic point set ◮ Error of QMC algorithm Q d,N err := | E ( g ( B )) − Q d,N ( f d ) | Christian Irrgeher (JKU Linz) 3

  7. Error estimate ◮ First estimate: � �� � � − Q d,N ( f d ) � � f d � f d � E ( g ( B )) − I � + � I � err ≤ discretization error integration error Christian Irrgeher (JKU Linz) 4

  8. Error estimate ◮ First estimate: � �� � � − Q d,N ( f d ) � � f d � f d � E ( g ( B )) − I � + � I � err ≤ discretization error integration error ◮ Analysis of both errors ◮ emphasis on integration error ◮ but discretization error not negligible Christian Irrgeher (JKU Linz) 4

  9. Discretization error ◮ Discretization (with step size 1 /d ) ◮ Euler-Maruyama method ◮ Milstein method ◮ . . . Christian Irrgeher (JKU Linz) 5

  10. Discretization error ◮ Discretization (with step size 1 /d ) ◮ Euler-Maruyama method ◮ Milstein method ◮ . . . ◮ Discretization error err disc ≤ c 1 d − p with convergence rate p > 0 and constant c 1 > 0 Christian Irrgeher (JKU Linz) 5

  11. Discretization error ◮ Discretization (with step size 1 /d ) ◮ Euler-Maruyama method ◮ Milstein method ◮ . . . ◮ Discretization error err disc ≤ c 1 d − p with convergence rate p > 0 and constant c 1 > 0 ◮ Convergence rate depends on ◮ discretization method ◮ function g Christian Irrgeher (JKU Linz) 5

  12. Gaussian measure and Hermite polynomials ⊤ x 2 π e − x 1 ◮ Density of the (standard) Gaussian measure ϕ ( x ) = √ 2 Christian Irrgeher (JKU Linz) 6

  13. Gaussian measure and Hermite polynomials ⊤ x 2 π e − x 1 ◮ Density of the (standard) Gaussian measure ϕ ( x ) = √ 2 � ◮ L 2 ( R d , ϕ ) = { f : R d − R d f ( x ) 2 ϕ ( x ) d x < ∞} → R : f measurable , Christian Irrgeher (JKU Linz) 6

  14. Gaussian measure and Hermite polynomials ⊤ x 2 π e − x 1 ◮ Density of the (standard) Gaussian measure ϕ ( x ) = √ 2 � ◮ L 2 ( R d , ϕ ) = { f : R d − R d f ( x ) 2 ϕ ( x ) d x < ∞} → R : f measurable , ◮ Univariate Hermite polynomials H k ( x ) = ( − 1) k 2 d k x 2 dx k e − x 2 √ e 2 k ! Christian Irrgeher (JKU Linz) 6

  15. Gaussian measure and Hermite polynomials ⊤ x 2 π e − x 1 ◮ Density of the (standard) Gaussian measure ϕ ( x ) = √ 2 � ◮ L 2 ( R d , ϕ ) = { f : R d − R d f ( x ) 2 ϕ ( x ) d x < ∞} → R : f measurable , ◮ Univariate Hermite polynomials H k ( x ) = ( − 1) k 2 d k x 2 dx k e − x 2 √ e 2 k ! ◮ Multivariate Hermite polynomials d � H k ( x ) = H k j ( x j ) j =1 Christian Irrgeher (JKU Linz) 6

  16. Gaussian measure and Hermite polynomials ⊤ x 2 π e − x 1 ◮ Density of the (standard) Gaussian measure ϕ ( x ) = √ 2 � ◮ L 2 ( R d , ϕ ) = { f : R d − R d f ( x ) 2 ϕ ( x ) d x < ∞} → R : f measurable , ◮ Univariate Hermite polynomials H k ( x ) = ( − 1) k 2 d k x 2 dx k e − x 2 √ e 2 k ! ◮ Multivariate Hermite polynomials d � H k ( x ) = H k j ( x j ) j =1 ◮ { H k } k is an ONB of L 2 ( R d , ϕ ) Christian Irrgeher (JKU Linz) 6

  17. Hermite expansion ◮ Hermite expansion of f ∈ L 2 ( R d , ϕ ) � ˆ in L 2 f ( x ) = f ( k ) H k ( x ) k ∈ N d 0 � ◮ k -th Hermite coefficient ˆ f ( k ) = R d f ( x ) H k ( x ) ϕ ( x ) d x Christian Irrgeher (JKU Linz) 7

  18. Hermite expansion ◮ Hermite expansion of f ∈ L 2 ( R d , ϕ ) � ˆ in L 2 f ( x ) = f ( k ) H k ( x ) k ∈ N d 0 � ◮ k -th Hermite coefficient ˆ f ( k ) = R d f ( x ) H k ( x ) ϕ ( x ) d x Theorem Let f ∈ L 2 ( R d , ϕ ) ∩ C ( R d ) and � 0 ˆ f ( k ) < ∞ . Then k ∈ N d � ˆ f ( x ) = f ( k ) H k ( x ) k ∈ N d 0 for all x ∈ R d . Christian Irrgeher (JKU Linz) 7

  19. Korobov space of functions on R ◮ Let α > 1 , γ > 0 . Define for k ∈ N 0 : � 1 if k = 0 r ( α, γ, k ) := γk − α if k � = 0 Christian Irrgeher (JKU Linz) 8

  20. Korobov space of functions on R ◮ Let α > 1 , γ > 0 . Define for k ∈ N 0 : � 1 if k = 0 r ( α, γ, k ) := γk − α if k � = 0 ◮ Introduce inner product: ∞ � r ( α, γ, k ) − 1 ˆ � f, g � α,γ := f ( k )ˆ g ( k ) k =0 Christian Irrgeher (JKU Linz) 8

  21. Korobov space of functions on R ◮ Let α > 1 , γ > 0 . Define for k ∈ N 0 : � 1 if k = 0 r ( α, γ, k ) := γk − α if k � = 0 ◮ Introduce inner product: ∞ � r ( α, γ, k ) − 1 ˆ � f, g � α,γ := f ( k )ˆ g ( k ) k =0 � ◮ Corresponding norm: � f � α,γ = � f, f � α,γ Christian Irrgeher (JKU Linz) 8

  22. Korobov space of functions on R ◮ Let α > 1 , γ > 0 . Define for k ∈ N 0 : � 1 if k = 0 r ( α, γ, k ) := γk − α if k � = 0 ◮ Introduce inner product: ∞ � r ( α, γ, k ) − 1 ˆ � f, g � α,γ := f ( k )ˆ g ( k ) k =0 � ◮ Corresponding norm: � f � α,γ = � f, f � α,γ ◮ Function space: H α,γ ( R , ϕ ) := { f ∈ L 2 ( R , ϕ ) ∩ C ( R ) : � f � α,γ < ∞} Christian Irrgeher (JKU Linz) 8

  23. Korobov space of functions on R ◮ H α,γ ( R , ϕ ) is a reproducing kernel Hilbert space Christian Irrgeher (JKU Linz) 9

  24. Korobov space of functions on R ◮ H α,γ ( R , ϕ ) is a reproducing kernel Hilbert space ◮ Reproducing kernel function K α,γ : R × R − → R ◮ K α,γ ( · , y ) ∈ H α,γ ( R , ϕ ) ∀ y ∈ R ◮ � f, K α,γ ( · , y ) � α, γ = f ( y ) ∀ y ∈ R ∀ f ∈ H α,γ ( R , ϕ ) Christian Irrgeher (JKU Linz) 9

  25. Korobov space of functions on R ◮ H α,γ ( R , ϕ ) is a reproducing kernel Hilbert space ◮ Reproducing kernel function K α,γ : R × R − → R ◮ K α,γ ( · , y ) ∈ H α,γ ( R , ϕ ) ∀ y ∈ R ◮ � f, K α,γ ( · , y ) � α, γ = f ( y ) ∀ y ∈ R ∀ f ∈ H α,γ ( R , ϕ ) ◮ Series representation of the reproducing kernel ∞ � k − α H k ( x ) H k ( y ) K α,γ ( x, y ) = 1 + γ k =1 Christian Irrgeher (JKU Linz) 9

  26. Korobov space of functions on R ◮ There are interesting functions in this space. ◮ Define differential operator D d dx − x x := Christian Irrgeher (JKU Linz) 10

  27. Korobov space of functions on R ◮ There are interesting functions in this space. ◮ Define differential operator D d dx − x x := Theorem (I. & Leobacher) Let β > 2 be an integer and f : R − → R be a β times differentiable function such that 1 (i) D j 2 ∈ L 1 ( R ) for each j ∈ { 1 , . . . , β } and x f ( x ) ϕ ( x ) � e x 2 / (2 c ) � as | x | → ∞ for each j ∈ { 0 , . . . , β − 1 } and (ii) D j x f ( x ) = O some c > 1 . Then f ∈ H α,γ ( R , ϕ ) with 1 < α < β − 1 . Christian Irrgeher (JKU Linz) 10

  28. Korobov space of functions on R d ◮ For non-increasing weights γ = ( γ 1 , . . . , γ d ) H α, γ ( R d , ϕ ) := H α,γ 1 ( R , ϕ ) ⊗ . . . ⊗ H α,γ d ( R , ϕ ) Christian Irrgeher (JKU Linz) 11

  29. Korobov space of functions on R d ◮ For non-increasing weights γ = ( γ 1 , . . . , γ d ) H α, γ ( R d , ϕ ) := H α,γ 1 ( R , ϕ ) ⊗ . . . ⊗ H α,γ d ( R , ϕ ) ◮ Inner product: � f, g � α, γ = � 0 r ( α, γ , k ) − 1 ˆ f ( k )ˆ g ( k ) k ∈ N d with r ( α, γ , k ) = � d j =1 r ( α, γ j , k j ) Christian Irrgeher (JKU Linz) 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend