tutorial on quasi monte carlo methods
play

Tutorial on quasi-Monte Carlo methods Josef Dick School of - PowerPoint PPT Presentation

Tutorial on quasi-Monte Carlo methods Josef Dick School of Mathematics and Statistics, UNSW, Sydney, Australia josef.dick@unsw.edu.au Comparison: MCMC, MC, QMC Roughly speaking: Markov chain Monte Carlo and quasi-Monte Carlo are for


  1. Tutorial on quasi-Monte Carlo methods Josef Dick School of Mathematics and Statistics, UNSW, Sydney, Australia josef.dick@unsw.edu.au

  2. Comparison: MCMC, MC, QMC Roughly speaking: • Markov chain Monte Carlo and quasi-Monte Carlo are for different types of problems; • If you have a problem where Monte Carlo does not work, then chances are quasi-Monte Carlo will not work as well; • If Monte Carlo works, but you want a faster method ⇒ try (randomized) quasi-Monte Carlo (some tweaking might be necessary). • Quasi-Monte Carlo is an "experimental design" approach to Monte Carlo simulation; In this talk we shall discuss how quasi-Monte Carlo can be faster than Monte Carlo under certain assumptions.

  3. Outline D ISCREPANCY , REPRODUCING KERNEL H ILBERT SPACES AND WORST - CASE ERROR Q UASI -M ONTE C ARLO POINT SETS R ANDOMIZATIONS W EIGHTED FUNCTION SPACES AND TRACTABILITY

  4. The task is to approximate an integral � I s ( f ) = [ 0 , 1 ] s f ( z ) d z for some integrand f by some quadrature rule N − 1 � Q N , s ( f ) = 1 f ( x n ) N n = 0 at some sample points x 0 , . . . , x N − 1 ∈ [ 0 , 1 ] s .

  5. � N − 1 � [ 0 , 1 ] s f ( x ) d x ≈ 1 f ( x n ) N n = 0 In other words: Area under curve = Volume of cube × average function value. • If x 0 , . . . , x N − 1 ∈ [ 0 , 1 ] s are chosen randomly ⇒ Monte Carlo • If x 0 , . . . , x N − 1 ∈ [ 0 , 1 ] s chosen deterministically ⇒ Quasi-Monte Carlo

  6. Smooth integrands • Integrand f : [ 0 , 1 ] → R ; say continuously differentiable; • We want to study the integration error: � 1 N − 1 � f ( x ) d x − 1 f ( x n ) . N 0 n = 0 • Representation: � 1 � 1 f ( x ) = f ( 1 ) − f ′ ( t ) d t = f ( 1 ) − 1 [ 0 , t ] ( x ) f ′ ( t ) d t , 0 x where � 1 if x ∈ [ 0 , t ] , 1 [ 0 , t ] ( x ) = 0 otherwise .

  7. Integration error • Substitute: � � � 1 � 1 � 1 f ( 1 ) − 1 [ 0 , t ] ( x ) f ′ ( t ) d t f ( x ) d x = d x 0 0 0 � 1 � 1 = f ( 1 ) − 1 [ 0 , t ] ( x ) f ′ ( t ) d x d t , 0 0 � � � 1 N − 1 N − 1 � � 1 f ( x n ) = 1 1 [ 0 , t ] ( x n ) f ′ ( t ) d t f ( 1 ) − N N 0 n = 0 n = 0 � 1 N − 1 � 1 = f ( 1 ) − 1 [ 0 , t ] ( x n ) f ′ ( t ) d t . N 0 n = 0 • Integration error: � � � 1 � 1 � 1 N − 1 N − 1 � � f ( x ) d x − 1 1 1 [ 0 , t ] ( x n ) − 1 [ 0 , t ] ( x ) d x f ′ ( t ) d t . f ( x n ) = N N 0 0 0 n = 0 n = 0

  8. Local discrepancy Integration error: � � � 1 � 1 N − 1 N − 1 � � f ( x ) d x − 1 1 1 [ 0 , t ] ( x n ) − t f ′ ( t ) d t . f ( x n ) = N N 0 0 n = 0 n = 0 Let P = { x 0 , . . . , x N − 1 } ⊂ [ 0 , 1 ] . Define the local discrepancy by N − 1 � ∆ P ( t ) = 1 1 [ 0 , t ] ( x n ) − t , t ∈ [ 0 , 1 ] . N n = 0 Then � 1 � 1 N − 1 � f ( x ) d x − 1 ∆ P ( t ) f ′ ( t ) d t . f ( x n ) = N 0 0 n = 0

  9. Koksma-Hlawka inequality � � � � � 1 � 1 � N − 1 � � � � f ( x ) d x − 1 � � � � ∆ P ( t ) f ′ ( t ) d t f ( x n ) � = � � � � � N � � 0 0 n = 0 �� 1 � 1 / p �� 1 � 1 / q | ∆ P ( t ) | p d t | f ′ ( t ) | q d t ≤ 0 0 1 p + 1 = � ∆ P � L p � f ′ � L q , q = 1 , �� | g | p � 1 / p . where � g � L p =

  10. Interpretation of discrepancy Let P = { x 0 , . . . , x N − 1 } ⊂ [ 0 , 1 ] . Recall the definition of the local discrepancy: N − 1 � ∆ P ( t ) = 1 1 [ 0 , t ] ( x n ) − t , t ∈ [ 0 , 1 ] . N n = 0 Local discrepancy measures difference between uniform distribution and emperical distribution of quadrature points P = { x 0 , . . . , x N − 1 } . This is the Kolmogorov-Smirnov test for the difference between the empirical distribution of { x 0 , . . . , x N − 1 } and the uniform distribution.

  11. Function space Representation � 1 f ′ ( t ) d t . f ( x ) = f ( 1 ) − x Define inner product: � 1 � f , g � = f ( 1 ) g ( 1 ) + f ′ ( t ) g ′ ( t ) d t . 0 and norm � � 1 | f ( 1 ) | 2 + | f ′ ( t ) | 2 d t . � f � = 0 Function space: H = { f : [ 0 , 1 ] → R : f absolutely continuous and � f � < ∞} .

  12. Worst-case error The worst-case error is defined by � � � 1 � N − 1 � � f ( x ) d x − 1 � � sup e ( H , P ) = f ( x n ) � . � � � N f ∈H , � f �≤ 1 0 n = 0

  13. Reproducing kernel Hilbert space Recall: � 1 f ′ ( x )( − 1 [ 0 , x ] ( y )) d x f ( y ) = f ( 1 ) · 1 + 0 and � 1 � f , g � = f ( 1 ) g ( 1 ) + f ′ ( x ) g ′ ( x ) d x . 0 Goal: Find set of functions g y ∈ H for each y ∈ [ 0 , 1 ] such that for all f ∈ H . � f , g y � = f ( y ) Conclusions: • g y ( 1 ) = 1 for all y ∈ [ 0 , 1 ] ; � − 1 • if y ≤ x , g ′ y ( x ) = − 1 [ 0 , x ] ( y ) = 0 otherwise ; • Make g continuous such that g ∈ H ;

  14. Reproducing kernel Hilbert space It follows that g y ( x ) = 1 + min { 1 − x , 1 − y } . The function K ( x , y ) := g y ( x ) = 1 + min { 1 − x , 1 − y } , x , y ∈ [ 0 , 1 ] is called reproducing kernel . The space H is called a reproducing kernel Hilbert space (with reproducing kernel K ).

  15. Numerical integration in reproducing kernel Hilbert spaces Function representation: � � � 1 � 1 � 1 f ( z ) d z = � f , K ( · , z ) � d z = f , K ( · , z ) d z 0 0 0 � � N − 1 N − 1 N − 1 � � � 1 f ( x n ) = 1 f , 1 � f , K ( · , x n ) � = K ( · , x n ) N N N n = 0 n = 0 n = 0 Integration error � � � 1 � 1 N − 1 N − 1 � � f ( z ) d z − 1 K ( · , z ) d z − 1 f ( x n ) = f , K ( · , x n ) N N 0 0 n = 0 n = 0 = � f , h � , where � 1 N − 1 � K ( x , z ) d z − 1 h ( x ) = K ( x , x n ) . N 0 n = 0

  16. Worst-case error in reproducing kernel Hilbert spaces Thus � � � 1 � N − 1 � � f ( z ) d z − 1 � � sup e ( H , P ) = � f ( x n ) � � N � f ∈H , � f �≤ 1 0 n = 0 sup = |� f , h �| f ∈H , � f � = 1 � � f �� � � � � sup = � f � , h � � f ∈H , f � = 0 = � h , h � � h � = � h � , since the supremum is attained when choosing f = � h � ∈ H . h

  17. Worst-case error in reproducing kernel Hilbert spaces � 1 � 1 � 1 N − 1 � K ( x , y ) d x d y − 2 e 2 ( H , P ) = K ( x , x n ) d x N 0 0 0 n = 0 N − 1 � + 1 K ( x n , x m ) N 2 n , m = 0

  18. Numerical integration in higher dimensions • Tensor product space H s = H × · · · × H . • Reproducing kernel s � [ 1 + min { 1 − x i , 1 − y i } ] , K ( x , y ) = i = 1 where x = ( x 1 , . . . , x s ) , y = ( y 1 , . . . , y s ) ∈ [ 0 , 1 ] s . • Functions f ∈ H s have partial mixed derivatives up to order 1 in each variable ∂ | u | f ∈ L 2 ([ 0 , 1 ] s ) , ∂ x u where u ⊆ { 1 , . . . , s } , x u = ( x i ) i ∈ u and | u | denotes the cardinality of u and where ∂ | u | f ∂ x u ( x u , 1 ) = 0 for all u ⊂ { 1 , . . . , s } .

  19. Worst-case error Again � � � N − 1 � [ 0 , 1 ] s K ( x , y ) d x d y − 2 e 2 ( H , P ) = [ 0 , 1 ] s K ( x , x n ) d x N [ 0 , 1 ] s n = 0 N − 1 � + 1 K ( x n , x m ) N 2 n , m = 0 and � [ 0 , 1 ] s ∆ P ( x ) ∂ s f e 2 ( H , P ) = ∂ x ( x ) d x , where N − 1 s � � ∆ P ( x ) = 1 1 [ 0 , x ] ( x n ) − x i . N n = 0 i = 1

  20. Discrepancy in higher dimensions Point set P = { x 0 , . . . , x N − 1 } ⊂ [ 0 , 1 ] s , t = ( t 1 , . . . , t s ) ∈ [ 0 , 1 ] s . • Local discrepancy: N − 1 s � � ∆ P ( t ) = 1 1 [ 0 , t ] ( x n ) − t i , N n = 0 i = 1 where [ 0 , t ] = � s i = 1 [ 0 , t i ] .

  21. Koksma-Hlawka inequality Let f : [ 0 , 1 ] s → R with �� � 1 / q � � q � ∂ s � � � � f � = ∂ x f ( x ) d x , � � [ 0 , 1 ] s and where ∂ | u | f ∂ x u ( x u , 1 ) = 0 for all u ⊂ { 1 , . . . , s } . Then � � � � N − 1 � � [ 0 , 1 ] s f ( x ) d x − 1 � � � f ( x n ) � � ≤ � f �� ∆ P � L p , � N n = 0 where 1 p + 1 q = 1. ⇒ Construct points P = { x 0 , . . . , x N − 1 } ⊂ [ 0 , 1 ] s with small discrepancy L p ( P ) = � ∆ P � L p . It is often useful to consider different reproducing kernels yielding different worst-case errors and discrepancies. We will see further examples later.

  22. Constructions of low-discrepancy sequences • Lattice rules (Bilyk, Brauchart, Cools, D., Hellekalek, Hickernell, Hlawka, Joe, Keller, Korobov, Kritzer, Kuo, Larcher, L ’Ecuyer, Lemieux, Leobacher, Niederreiter, Nuyens, Pillichshammer, Sinescu, Sloan, Temlyakov, Wang, Wo´ zniakowski, ...) • Digital nets and sequences (Baldeaux, Bierbrauer, Brauchart, Chen, D., Edel, Faure, Hellekalek, Hofer, Keller, Kritzer, Kuo, Larcher, Leobacher, Niederreiter, Owen, Özbudak, Pillichshammer, Pirsic, Schmid, Skriganov, Sobol’, Wang, Xing, Yue, ...) • Hammersley-Halton sequences (Atanassov, De Clerck, Faure, Halton, Hammersley, Kritzer, Larcher, Lemieux, Pillichshammer, Pirsic, White, ...) • Kronecker sequences (Beck, Hellekalek, Larcher, Niederreiter, Schoissengeier, ...)

  23. Lattice rules Let N ∈ N , let g = ( g 1 , . . . , g s ) ∈ { 1 , . . . , N − 1 } s . Choose the quadrature points as � n g � for n = 0 , . . . , N − 1 , x n = , N where { z } = z − ⌊ z ⌋ for z ∈ R + 0 .

  24. Fibonacci lattice rules Lattice rule with N = 55 points and generating vector g = ( 1 , 34 ) .

  25. Fibonacci lattice rules Lattice rule with N = 89 points and generating vector g = ( 1 , 55 ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend