moments of random matrices and hypergeometric orthogonal
play

Moments of Random Matrices and Hypergeometric Orthogonal Polynomials - PowerPoint PPT Presentation

Moments of Random Matrices and Hypergeometric Orthogonal Polynomials Francesco Mezzadri Integrability and Randonmness in Mathematical Physics and Geometry CIRM, Luminy, 8-12 April 2019 Collaborators: Fabio D Cunden (UCD), Neil OConnell


  1. Moments of Random Matrices and Hypergeometric Orthogonal Polynomials Francesco Mezzadri Integrability and Randonmness in Mathematical Physics and Geometry CIRM, Luminy, 8-12 April 2019 Collaborators: Fabio D Cunden (UCD), Neil O’Connell (UCD) and Nick Simm (Sussex)

  2. Outline Moments of Random Matrices Moments & Hypergeometric OP’s Wronskians & Hypergeometric OP’s Moments for β = 1 and β = 4 Conclusions

  3. Moments of Random Matrices ◮ j,p.d.f. of the eigenvalues at the classical RMT Ensembles n 1 � � | x k − x j | β dx 1 · · · dx n w β ( x j ) χ I ( x j ) C n ,β j =1 1 ≤ j < k ≤ n β = 1 , 2 , 4, I = R , I = R + and I = [0 , 1]

  4. Moments of Random Matrices ◮ j,p.d.f. of the eigenvalues at the classical RMT Ensembles n 1 � � | x k − x j | β dx 1 · · · dx n w β ( x j ) χ I ( x j ) C n ,β j =1 1 ≤ j < k ≤ n β = 1 , 2 , 4, I = R , I = R + and I = [0 , 1] ◮ The weights are e − ( β/ 2) x 2  Hermite   x ( β/ 2)( m − n +1) − 1 e − ( β/ 2) x w β ( x ) = Laguerre β 2 ( m 1 − n +1) − 1 x β  2 ( m 2 − n +1) − 1 (1 − x ) Jacobi 

  5. Moments of Random Matrices ◮ GUE ensemble n | x k − x j | 2 � − x 2 � � � P n ( x 1 , . . . , x n ) = C n exp j j =1 1 ≤ j < k ≤ n

  6. Moments of Random Matrices ◮ GUE ensemble n | x k − x j | 2 � − x 2 � � � P n ( x 1 , . . . , x n ) = C n exp j j =1 1 ≤ j < k ≤ n ◮ The k-point correlation function k × k [ K n ( x i , x j )] k R k ( x 1 , . . . , x k ) = det i , j =1

  7. Moments of Random Matrices ◮ GUE ensemble n | x k − x j | 2 � − x 2 � � � P n ( x 1 , . . . , x n ) = C n exp j j =1 1 ≤ j < k ≤ n ◮ The k-point correlation function k × k [ K n ( x i , x j )] k R k ( x 1 , . . . , x k ) = det i , j =1 ◮ The kernel is expressed in terms of Hermite polymonials, n − 1 H k ( x ) H k ( y ) K n ( x , y ) = e − ( x 2 + y 2 ) / 2 � √ π 2 k k ! k =0 H k ( x ) = ( − 1) k e x 2 d k dx k e − x 2 � ∞ H k ( x ) H j ( x ) e − x 2 dx = √ π 2 k k ! δ jk −∞

  8. Moments of Random Matrices ◮ We define the eigenvalue density ρ ( β ) n ( x )   n ρ ( β ) � n ( x ) = R 1 ( x ) = E δ ( x − x j )   j =1

  9. Moments of Random Matrices ◮ We define the eigenvalue density ρ ( β ) n ( x )   n ρ ( β ) � n ( x ) = R 1 ( x ) = E δ ( x − x j )   j =1 ◮ The main object we study � x k ρ ( β ) E Tr X k n = n ( x ) dx I

  10. Moments of Random Matrices ◮ We define the eigenvalue density ρ ( β ) n ( x )   n ρ ( β ) � n ( x ) = R 1 ( x ) = E δ ( x − x j )   j =1 ◮ The main object we study � x k ρ ( β ) E Tr X k n = n ( x ) dx I ◮ Applications:

  11. Moments of Random Matrices ◮ We define the eigenvalue density ρ ( β ) n ( x )   n ρ ( β ) � n ( x ) = R 1 ( x ) = E δ ( x − x j )   j =1 ◮ The main object we study � x k ρ ( β ) E Tr X k n = n ( x ) dx I ◮ Applications: ◮ Quantum Transport: Conductance, Shot noise, Wigner time-delay

  12. Moments of Random Matrices ◮ We define the eigenvalue density ρ ( β ) n ( x )   n ρ ( β ) � n ( x ) = R 1 ( x ) = E δ ( x − x j )   j =1 ◮ The main object we study � x k ρ ( β ) E Tr X k n = n ( x ) dx I ◮ Applications: ◮ Quantum Transport: Conductance, Shot noise, Wigner time-delay ◮ Quantum Field Theory — maps enumerations

  13. Moments of Random Matrices ◮ We define the eigenvalue density ρ ( β ) n ( x )   n ρ ( β ) � n ( x ) = R 1 ( x ) = E δ ( x − x j )   j =1 ◮ The main object we study � x k ρ ( β ) E Tr X k n = n ( x ) dx I ◮ Applications: ◮ Quantum Transport: Conductance, Shot noise, Wigner time-delay ◮ Quantum Field Theory — maps enumerations ◮ Others...

  14. Moments of Random Matrices ◮ If X n is a GUE matrix then [ k / 2] ǫ g ( k ) � Q C k ( n ) = E Tr X 2 k = n k +1 n 2 g . n g =0 ǫ g ( k ) is the number of maps of genus g with k edges.

  15. Moments of Random Matrices ◮ If X n is a GUE matrix then [ k / 2] ǫ g ( k ) � Q C k ( n ) = E Tr X 2 k = n k +1 n 2 g . n g =0 ǫ g ( k ) is the number of maps of genus g with k edges. ◮ Take X n in the LUE, i.e. w ( λ ) = λ n e − n λ .

  16. Moments of Random Matrices ◮ If X n is a GUE matrix then [ k / 2] ǫ g ( k ) � Q C k ( n ) = E Tr X 2 k = n k +1 n 2 g . n g =0 ǫ g ( k ) is the number of maps of genus g with k edges. ◮ Take X n in the LUE, i.e. w ( λ ) = λ n e − n λ . ◮ Then τ = (1 / n ) Tr X − 1 is the Wigner delay time n

  17. Moments of Random Matrices ◮ If X n is a GUE matrix then [ k / 2] ǫ g ( k ) � Q C k ( n ) = E Tr X 2 k = n k +1 n 2 g . n g =0 ǫ g ( k ) is the number of maps of genus g with k edges. ◮ Take X n in the LUE, i.e. w ( λ ) = λ n e − n λ . ◮ Then τ = (1 / n ) Tr X − 1 is the Wigner delay time n ◮ The CGF H n ( t ) satisfies Painlev´ e III (FM & Simm, 2013) n ) 2 − H ′ n ) 2 = 4 H n n ) 2 ( zH ′′ � ( H ′ � � 4 z ( H ′ − n − (4 z + ( b − 2 n ) 2 ) H ′ H ′ n + n 2 . � n − 2 n ( b − 2 n )

  18. Moments of Random Matrices ◮ Take the cumulant expansion of τ , 1 c g ( ν ) � C ν = (2 n 2 ) ν − 1 n g g ≥ 0

  19. Moments of Random Matrices ◮ Take the cumulant expansion of τ , 1 c g ( ν ) � C ν = (2 n 2 ) ν − 1 n g g ≥ 0 ◮ c 0 ( ν ) are integers for all ν (FM & Simm, 2013)

  20. Moments of Random Matrices ◮ Take the cumulant expansion of τ , 1 c g ( ν ) � C ν = (2 n 2 ) ν − 1 n g g ≥ 0 ◮ c 0 ( ν ) are integers for all ν (FM & Simm, 2013) ◮ Take M ( β ) ( n ) = n k − 1 E Tr X − k k ≥ 0 , β = 1 , 2 n k

  21. Moments of Random Matrices ◮ Take the cumulant expansion of τ , 1 c g ( ν ) � C ν = (2 n 2 ) ν − 1 n g g ≥ 0 ◮ c 0 ( ν ) are integers for all ν (FM & Simm, 2013) ◮ Take M ( β ) ( n ) = n k − 1 E Tr X − k k ≥ 0 , β = 1 , 2 n k ◮ Now take the asymptotics expansion of the moments ∞ M ( β ) � κ ( β ) g ( k ) n − g , ( n ) = β = 1 , 2 . k g =0

  22. Moments of Random Matrices ◮ Conjecture: κ (2) ∈ N (Cunden, FM, Simm & Vivo 2016) g

  23. Moments of Random Matrices ◮ Conjecture: κ (2) ∈ N (Cunden, FM, Simm & Vivo 2016) g ◮ Cumulant expansion of negative powers of matrices in the LUE 1 Tr X − µ 1 , . . . , Tr X − µ k � � � n − g c g ( µ 1 , . . . , µ k ) , C k = n n (2 N 2 ) k − 1 g ≥ 0 with ( µ 1 , . . . , µ k ) ∈ N k .

  24. Moments of Random Matrices ◮ Conjecture: κ (2) ∈ N (Cunden, FM, Simm & Vivo 2016) g ◮ Cumulant expansion of negative powers of matrices in the LUE 1 Tr X − µ 1 , . . . , Tr X − µ k � � � n − g c g ( µ 1 , . . . , µ k ) , C k = n n (2 N 2 ) k − 1 g ≥ 0 with ( µ 1 , . . . , µ k ) ∈ N k . ◮ The c g ( µ 1 , . . . , µ k ) are Hurwitz numbers (Cunden, Dahlqvist & O’Connell 2018)

  25. Moments & Hypergeometric OP’s ◮ If X n is a GUE matrix then E Tr X 2 k is a polynomial in n n n = 14 n 5 + 70 n 3 + 21 n . E Tr X 8 ( ∗ )

  26. Moments & Hypergeometric OP’s ◮ If X n is a GUE matrix then E Tr X 2 k is a polynomial in n n n = 14 n 5 + 70 n 3 + 21 n . E Tr X 8 ( ∗ ) ◮ Can we say something about it as a function of k ? ( k +2) Q C k +1 ( n ) = 2 n (2 k +1) Q C k ( n )+ k (2 k +1)(2 k − 1) Q C k − 1 ( n ) , (Harer and Zagier, 1986)

  27. Moments & Hypergeometric OP’s ◮ If X n is a GUE matrix then E Tr X 2 k is a polynomial in n n n = 14 n 5 + 70 n 3 + 21 n . E Tr X 8 ( ∗ ) ◮ Can we say something about it as a function of k ? ( k +2) Q C k +1 ( n ) = 2 n (2 k +1) Q C k ( n )+ k (2 k +1)(2 k − 1) Q C k − 1 ( n ) , (Harer and Zagier, 1986) ◮ It turns out that 1 = 4 3 k 3 + 4 k 2 + 20 (2 k − 1)!! E Tr X 2 k 3 k + 4 . 4

  28. Moments & Hypergeometric OP’s ◮ If X n is a GUE matrix then E Tr X 2 k is a polynomial in n n n = 14 n 5 + 70 n 3 + 21 n . E Tr X 8 ( ∗ ) ◮ Can we say something about it as a function of k ? ( k +2) Q C k +1 ( n ) = 2 n (2 k +1) Q C k ( n )+ k (2 k +1)(2 k − 1) Q C k − 1 ( n ) , (Harer and Zagier, 1986) ◮ It turns out that 1 = 4 3 k 3 + 4 k 2 + 20 (2 k − 1)!! E Tr X 2 k 3 k + 4 . 4 This is a Meixner polynomial!

  29. Moments & Hypergeometric OP’s ◮ Meixner polynomials have the representation � − n , − x ; 1 − 1 � M n ( x ; γ, c ) = 2 F 1 γ c

  30. Moments & Hypergeometric OP’s ◮ Meixner polynomials have the representation � − n , − x ; 1 − 1 � M n ( x ; γ, c ) = 2 F 1 γ c ◮ They obey the orthogonality relation ∞ ( γ ) x � x ! c x M n ( x ; γ, c ) M m ( x ; γ, c ) x =0 c − n n ! = ( γ ) x (1 − c ) γ δ mn , γ > 0 , 0 < c < 1

  31. Moments & Hypergeometric OP’s ◮ Meixner polynomials have the representation � − n , − x ; 1 − 1 � M n ( x ; γ, c ) = 2 F 1 γ c ◮ They obey the orthogonality relation ∞ ( γ ) x � x ! c x M n ( x ; γ, c ) M m ( x ; γ, c ) x =0 c − n n ! = ( γ ) x (1 − c ) γ δ mn , γ > 0 , 0 < c < 1 ◮ They obey the recurrence relation ( c − 1) xM n ( x ; γ, c ) = c ( n + γ ) M n +1 ( x ; γ, c ) − [ n + ( n + γ ) c ] M n ( x ; γ, c ) + nM n − 1 ( x ; γ, c )

  32. Moments & Hypergeometric OP’s ◮ Take X n in the LUE with parameter α = m − n and define Q C k ( m , n ) = E Tr X k n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend