moments of askey wilson polynomials jang soo kim
play

Moments of Askey-Wilson polynomials Jang Soo Kim Joint work with - PowerPoint PPT Presentation

1 / 28 Moments of Askey-Wilson polynomials Jang Soo Kim Joint work with Dennis Stanton Korea Institute for Advanced Study (KIAS) June 25, 2013 2 / 28 Definition of orthogonal polynomials Definition { P n ( x ) } n 0 are orthogonal


  1. 7 / 28 Product of Hermite polynomials Theorem (Azor, Gillis, and Victor, 1982) L ( H n 1 ( x ) · · · H n k ( x )) = # perfect matchings on k sections [ n 1 ] ⊎ · · · ⊎ [ n k ] without homogeneous edges. Example L ( H n 1 ( x ) H n 2 ( x ) H n 3 ( x ) H n 4 ( x )) is # perfect matchings such as n 1 n 2 n 3 n 4 L ( H n ( x ) H m ( x )) = 0 if n � = m

  2. 7 / 28 Product of Hermite polynomials Theorem (Azor, Gillis, and Victor, 1982) L ( H n 1 ( x ) · · · H n k ( x )) = # perfect matchings on k sections [ n 1 ] ⊎ · · · ⊎ [ n k ] without homogeneous edges. Example L ( H n 1 ( x ) H n 2 ( x ) H n 3 ( x ) H n 4 ( x )) is # perfect matchings such as n 1 n 2 n 3 n 4 L ( H n ( x ) H m ( x )) = 0 if n � = m L ( H n ( x ) H n ( x )) = n !

  3. 8 / 28 Askey scheme

  4. 8 / 28 Askey scheme

  5. 9 / 28 Notations [ n ] q = 1 + q + q 2 + · · · + q n − 1

  6. 9 / 28 Notations [ n ] q = 1 + q + q 2 + · · · + q n − 1 [ n ] q ! = [ 1 ] q [ 2 ] q · · · [ n ] q

  7. 9 / 28 Notations [ n ] q = 1 + q + q 2 + · · · + q n − 1 [ n ] q ! = [ 1 ] q [ 2 ] q · · · [ n ] q q -binomial coefficient � � [ n ] q ! n = k [ k ] q ![ n − k ] q ! q

  8. 9 / 28 Notations [ n ] q = 1 + q + q 2 + · · · + q n − 1 [ n ] q ! = [ 1 ] q [ 2 ] q · · · [ n ] q q -binomial coefficient � � [ n ] q ! n = k [ k ] q ![ n − k ] q ! q q -multinomial coefficient � � a 1 + · · · + a k = [ a 1 + · · · + a k ] q ! a 1 , . . . , a k [ a 1 ] q ! · · · [ a k ] q ! q

  9. 9 / 28 Notations [ n ] q = 1 + q + q 2 + · · · + q n − 1 [ n ] q ! = [ 1 ] q [ 2 ] q · · · [ n ] q q -binomial coefficient � � [ n ] q ! n = k [ k ] q ![ n − k ] q ! q q -multinomial coefficient � � a 1 + · · · + a k = [ a 1 + · · · + a k ] q ! a 1 , . . . , a k [ a 1 ] q ! · · · [ a k ] q ! q q -shifted factorial ( q -Pochhammer symbol ) ( a ) n = ( a ; q ) n = ( 1 − a )( 1 − aq ) · · · ( 1 − aq n − 1 )

  10. 9 / 28 Notations [ n ] q = 1 + q + q 2 + · · · + q n − 1 [ n ] q ! = [ 1 ] q [ 2 ] q · · · [ n ] q q -binomial coefficient � � [ n ] q ! n = k [ k ] q ![ n − k ] q ! q q -multinomial coefficient � � a 1 + · · · + a k = [ a 1 + · · · + a k ] q ! a 1 , . . . , a k [ a 1 ] q ! · · · [ a k ] q ! q q -shifted factorial ( q -Pochhammer symbol ) ( a ) n = ( a ; q ) n = ( 1 − a )( 1 − aq ) · · · ( 1 − aq n − 1 ) ( a 1 , . . . , a k ) n = ( a 1 ) n · · · ( a k ) n

  11. 10 / 28 Askey-Wilson polynomials Askey-Wilson polynomials P n ( x ) = P n ( x ; a , b , c , d ; q ) with x = cos θ � � � � q − n , abcdq n − 1 , ae i θ , ae − i θ P n ( x ; a , b , c , d | q ) = ( ab , ac , ad ) n � 4 φ 3 � q ; q . ab , ac , ad a n

  12. 10 / 28 Askey-Wilson polynomials Askey-Wilson polynomials P n ( x ) = P n ( x ; a , b , c , d ; q ) with x = cos θ � � � � q − n , abcdq n − 1 , ae i θ , ae − i θ P n ( x ; a , b , c , d | q ) = ( ab , ac , ad ) n � 4 φ 3 � q ; q . ab , ac , ad a n � 1 1 dx Orthogonality P m ( x ) P n ( x ) w ( x ) √ 1 − x 2 = h n δ nm , where 2 π − 1 w ( x ) = w ( x ; a , b , c , d ; q ) is ( e 2 i θ , e − 2 i θ ) ∞ w ( cos θ, a , b , c , d ; q ) = ( ae i θ , ae − i θ , be i θ , be − i θ , ce i θ , ce − i θ , de i θ , de − i θ ) ∞ .

  13. 10 / 28 Askey-Wilson polynomials Askey-Wilson polynomials P n ( x ) = P n ( x ; a , b , c , d ; q ) with x = cos θ � � � � q − n , abcdq n − 1 , ae i θ , ae − i θ P n ( x ; a , b , c , d | q ) = ( ab , ac , ad ) n � 4 φ 3 � q ; q . ab , ac , ad a n � 1 1 dx Orthogonality P m ( x ) P n ( x ) w ( x ) √ 1 − x 2 = h n δ nm , where 2 π − 1 w ( x ) = w ( x ; a , b , c , d ; q ) is ( e 2 i θ , e − 2 i θ ) ∞ w ( cos θ, a , b , c , d ; q ) = ( ae i θ , ae − i θ , be i θ , be − i θ , ce i θ , ce − i θ , de i θ , de − i θ ) ∞ . The normalized n th moment µ n ( a , b , c , d ; q ) is ( µ 0 = 1 ) � 1 dx x n w ( x ) µ n ( a , b , c , d ; q ) = C √ 1 − x 2 . − 1

  14. 10 / 28 Askey-Wilson polynomials Askey-Wilson polynomials P n ( x ) = P n ( x ; a , b , c , d ; q ) with x = cos θ � � � � q − n , abcdq n − 1 , ae i θ , ae − i θ P n ( x ; a , b , c , d | q ) = ( ab , ac , ad ) n � 4 φ 3 � q ; q . ab , ac , ad a n � 1 1 dx Orthogonality P m ( x ) P n ( x ) w ( x ) √ 1 − x 2 = h n δ nm , where 2 π − 1 w ( x ) = w ( x ; a , b , c , d ; q ) is ( e 2 i θ , e − 2 i θ ) ∞ w ( cos θ, a , b , c , d ; q ) = ( ae i θ , ae − i θ , be i θ , be − i θ , ce i θ , ce − i θ , de i θ , de − i θ ) ∞ . The normalized n th moment µ n ( a , b , c , d ; q ) is ( µ 0 = 1 ) � 1 dx x n w ( x ) µ n ( a , b , c , d ; q ) = C √ 1 − x 2 . − 1 µ n ( a , b , c , d ; q ) is symmetrical in a , b , c , d .

  15. 11 / 28 Known formulas for Askey-Wilson moments Theorem (Corteel, Stanley, Stanton, Williams, 2010) q − j 2 a − 2 j ( aq j + q − j / a ) n � n � m ( ab , ac , ad ) m µ n ( a , b , c , d ; q ) = 1 q m ( q , q 1 − 2 j / a 2 ) j ( q , q 2 j + 1 a 2 ) m − j . 2 n ( abcd ) m m = 0 j = 0

  16. 11 / 28 Known formulas for Askey-Wilson moments Theorem (Corteel, Stanley, Stanton, Williams, 2010) q − j 2 a − 2 j ( aq j + q − j / a ) n � n � m ( ab , ac , ad ) m µ n ( a , b , c , d ; q ) = 1 q m ( q , q 1 − 2 j / a 2 ) j ( q , q 2 j + 1 a 2 ) m − j . 2 n ( abcd ) m m = 0 j = 0 Theorem (Ismail and Rahman, 2011) n � 1 − a 2 q 2 k · ( a 2 , q − n ) k ( ab , qac , qad ) n ( q , a 2 q n + 1 ) k ( 1 + a 2 q 2 k ) n µ n ( a , b , c , d ; q ) = ( 2 a ) n ( q , qa 2 , abcd ) n 1 − a 2 k = 0 � � � q k − n , q , cd , aq k + 1 / b � ( 1 − ac )( 1 − ad ) × q k ( n + 1 ) � 4 φ 3 � q , q acq k + 1 , adq k + 1 , q 1 − n / ab ( 1 − acq k )( 1 − adq k )

  17. 11 / 28 Known formulas for Askey-Wilson moments Theorem (Corteel, Stanley, Stanton, Williams, 2010) q − j 2 a − 2 j ( aq j + q − j / a ) n � n � m ( ab , ac , ad ) m µ n ( a , b , c , d ; q ) = 1 q m ( q , q 1 − 2 j / a 2 ) j ( q , q 2 j + 1 a 2 ) m − j . 2 n ( abcd ) m m = 0 j = 0 Theorem (Ismail and Rahman, 2011) n � 1 − a 2 q 2 k · ( a 2 , q − n ) k ( ab , qac , qad ) n ( q , a 2 q n + 1 ) k ( 1 + a 2 q 2 k ) n µ n ( a , b , c , d ; q ) = ( 2 a ) n ( q , qa 2 , abcd ) n 1 − a 2 k = 0 � � � q k − n , q , cd , aq k + 1 / b � ( 1 − ac )( 1 − ad ) × q k ( n + 1 ) � 4 φ 3 � q , q acq k + 1 , adq k + 1 , q 1 − n / ab ( 1 − acq k )( 1 − adq k ) Proposition (K., Stanton, 2012) 2 n ( abcd ) n µ n ( a , b , c , d ; q ) is a polynomial in a , b , c , d , q with integer coefficients.

  18. 12 / 28 Main purpose Give 3 combinatorial methods for computing µ n .

  19. 12 / 28 Main purpose Give 3 combinatorial methods for computing µ n . Motzkin paths

  20. 12 / 28 Main purpose Give 3 combinatorial methods for computing µ n . Motzkin paths staircase tableaux

  21. 12 / 28 Main purpose Give 3 combinatorial methods for computing µ n . Motzkin paths staircase tableaux q -Hermite polynomials and matchings

  22. 13 / 28 Motzkin paths Image stolen from Wikipedia

  23. 14 / 28 Motzkin paths The Askey-Wilson polynomials P n = P n ( x ; a , b , c , d ; q ) satisfy P n + 1 = ( x − b n ) P n − λ n P n − 1 , b n = 1 λ n = 1 2 ( a + a − 1 − ( A n + C n )) , 4 A n − 1 C n , where A n = ( 1 − abq n )( 1 − acq n )( 1 − adq n )( 1 − abcdq n − 1 ) , a ( 1 − abcdq 2 n − 1 )( 1 − abcdq 2 n ) C n = a ( 1 − q n )( 1 − bcq n − 1 )( 1 − bdq n − 1 )( 1 − cdq n − 1 ) . ( 1 − abcdq 2 n − 2 )( 1 − abcdq 2 n − 1 )

  24. 14 / 28 Motzkin paths The Askey-Wilson polynomials P n = P n ( x ; a , b , c , d ; q ) satisfy P n + 1 = ( x − b n ) P n − λ n P n − 1 , b n = 1 λ n = 1 2 ( a + a − 1 − ( A n + C n )) , 4 A n − 1 C n , where A n = ( 1 − abq n )( 1 − acq n )( 1 − adq n )( 1 − abcdq n − 1 ) , a ( 1 − abcdq 2 n − 1 )( 1 − abcdq 2 n ) C n = a ( 1 − q n )( 1 − bcq n − 1 )( 1 − bdq n − 1 )( 1 − cdq n − 1 ) . ( 1 − abcdq 2 n − 2 )( 1 − abcdq 2 n − 1 ) If c = d = 0 , then b i = aq i + bq i and λ i = ( 1 − abq i − 1 )( 1 − q i ) .

  25. 14 / 28 Motzkin paths The Askey-Wilson polynomials P n = P n ( x ; a , b , c , d ; q ) satisfy P n + 1 = ( x − b n ) P n − λ n P n − 1 , b n = 1 λ n = 1 2 ( a + a − 1 − ( A n + C n )) , 4 A n − 1 C n , where A n = ( 1 − abq n )( 1 − acq n )( 1 − adq n )( 1 − abcdq n − 1 ) , a ( 1 − abcdq 2 n − 1 )( 1 − abcdq 2 n ) C n = a ( 1 − q n )( 1 − bcq n − 1 )( 1 − bdq n − 1 )( 1 − cdq n − 1 ) . ( 1 − abcdq 2 n − 2 )( 1 − abcdq 2 n − 1 ) If c = d = 0 , then b i = aq i + bq i and λ i = ( 1 − abq i − 1 )( 1 − q i ) . Doubly striped skew shapes : generalization of Dongsu Kim’s striped skew shapes. ⇔

  26. 15 / 28 The c = d = 0 case: Al-Salam-Chihara polynomials Theorem (K., Stanton, 2012) �� � � �� � � � n � n n u + v + t a u b v ( − 1 ) t q ( t + 1 2 ) 2 n µ n ( a , b , 0 , 0 ; q ) = − n − k n − k − 1 u , v , t 2 2 k = 0 u + v + 2 t = k q

  27. 15 / 28 The c = d = 0 case: Al-Salam-Chihara polynomials Theorem (K., Stanton, 2012) �� � � �� � � � n � n n u + v + t a u b v ( − 1 ) t q ( t + 1 2 ) 2 n µ n ( a , b , 0 , 0 ; q ) = − n − k n − k − 1 u , v , t 2 2 k = 0 u + v + 2 t = k q This is equivalent to a formula of Josuat-Vergès.

  28. 15 / 28 The c = d = 0 case: Al-Salam-Chihara polynomials Theorem (K., Stanton, 2012) �� � � �� � � � n � n n u + v + t a u b v ( − 1 ) t q ( t + 1 2 ) 2 n µ n ( a , b , 0 , 0 ; q ) = − n − k n − k − 1 u , v , t 2 2 k = 0 u + v + 2 t = k q This is equivalent to a formula of Josuat-Vergès. Theorem (Corteel, Josuat-Vergès, Rubey, Prellberg, 2009) The n th moment of q -Laguerre polynomials is equal to � � y wex ( π ) q cr ( π ) = y row ( π ) q so ( π ) = π ∈ S n T ∈PT n �� �� � � �� �� n − k � n � � k 1 n n n n y j ( − 1 ) k y i q i ( k + 1 − i ) . − ( 1 − q ) n j + k j − 1 j + k + 1 j k = 0 j = 0 i = 0

  29. 15 / 28 The c = d = 0 case: Al-Salam-Chihara polynomials Theorem (K., Stanton, 2012) �� � � �� � � � n � n n u + v + t a u b v ( − 1 ) t q ( t + 1 2 ) 2 n µ n ( a , b , 0 , 0 ; q ) = − n − k n − k − 1 u , v , t 2 2 k = 0 u + v + 2 t = k q This is equivalent to a formula of Josuat-Vergès. Theorem (Corteel, Josuat-Vergès, Rubey, Prellberg, 2009) The n th moment of q -Laguerre polynomials is equal to � � y wex ( π ) q cr ( π ) = y row ( π ) q so ( π ) = π ∈ S n T ∈PT n �� �� � � �� �� n − k � n � � k 1 n n n n y j ( − 1 ) k y i q i ( k + 1 − i ) . − ( 1 − q ) n j + k j − 1 j + k + 1 j k = 0 j = 0 i = 0 Our proof is the first combinatorial proof of CJRP .

  30. 16 / 28 Open problem If d = 0 , b n = ( a + b + c ) q n − abcq 2 n − abcq 2 n − 1 λ n = ( 1 − q n )( 1 − abq n − 1 )( 1 − bcq n − 1 )( 1 − caq n − 1 ) . i i i i − 1 i − 1 λ i b i 1

  31. 16 / 28 Open problem If d = 0 , b n = ( a + b + c ) q n − abcq 2 n − abcq 2 n − 1 λ n = ( 1 − q n )( 1 − abq n − 1 )( 1 − bcq n − 1 )( 1 − caq n − 1 ) . i i i i − 1 i − 1 λ i b i 1 Problem Find a combinatorial proof using Motzkin paths of the following identity: �� � � �� � � n n n wt ( P ) = − n − k n − k − 1 2 2 P ∈ Mot n k = 0 � � � � � � � u + v + t v + w + t w + u + t a u b v c w ( − 1 ) t q ( t + 1 2 ) × v w u u + v + w + 2 t = k q q q

  32. 17 / 28 Staircase tableaux

  33. 18 / 28 Staircase tableaux A staircase tableau of size n is a filling of the Young diagram of the staircase partition ( n , n − 1 , . . . , 1 ) with α, β, γ, δ satisfying certain conditions. γ β γ α α δ γ δ β δ β

  34. 18 / 28 Staircase tableaux A staircase tableau of size n is a filling of the Young diagram of the staircase partition ( n , n − 1 , . . . , 1 ) with α, β, γ, δ satisfying certain conditions. γ β γ α α δ γ δ β δ β Introduced by Corteel and Williams (2010).

  35. 18 / 28 Staircase tableaux A staircase tableau of size n is a filling of the Young diagram of the staircase partition ( n , n − 1 , . . . , 1 ) with α, β, γ, δ satisfying certain conditions. γ β γ α α δ γ δ β δ β Introduced by Corteel and Williams (2010). Have connection with asymmetric exclusion process (ASEP) and moments of Askey-Wilson.

  36. 18 / 28 Staircase tableaux A staircase tableau of size n is a filling of the Young diagram of the staircase partition ( n , n − 1 , . . . , 1 ) with α, β, γ, δ satisfying certain conditions. γ β γ α α δ γ δ β δ β Introduced by Corteel and Williams (2010). Have connection with asymmetric exclusion process (ASEP) and moments of Askey-Wilson. If there are no γ and δ , we get permutation tableaux .

  37. 19 / 28 Staircase tableaux Theorem (Corteel, Stanley, Stanton, Williams, 2010) 2 n ( abcd ) n µ n ( a , b , c , d ; q ) = i − n � ( − 1 ) b ( T ) ( 1 − q ) A ( T )+ B ( T )+ C ( T )+ D ( T ) − n q E ( T ) T ∈T ( n ) × ( ac ) C ( T ) ( bd ) D ( T ) � � n − A ( T ) − C ( T ) � � n − B ( T ) − D ( T ) . ( 1 + ai )( 1 + ci ) ( 1 − bi )( 1 − di )

  38. 19 / 28 Staircase tableaux Theorem (Corteel, Stanley, Stanton, Williams, 2010) 2 n ( abcd ) n µ n ( a , b , c , d ; q ) = i − n � ( − 1 ) b ( T ) ( 1 − q ) A ( T )+ B ( T )+ C ( T )+ D ( T ) − n q E ( T ) T ∈T ( n ) × ( ac ) C ( T ) ( bd ) D ( T ) � � n − A ( T ) − C ( T ) � � n − B ( T ) − D ( T ) . ( 1 + ai )( 1 + ci ) ( 1 − bi )( 1 − di ) Theorem (K., Stanton, 2012) We have � 2 ) � � n � a n b n c n d n q ( n 2 n ( abcd ) n µ n ( a , b , c , d ; q ) = Cat , 2 � n + 1 � � 2 ) � a n − 1 b n c n d n q ( n 2 n ( abcd ) n µ n ( a , b , c , d ; q ) = − Cat , 2 � n + 2 � � 2 ) � � n � a n − 1 b n − 1 c n d n q ( n 2 n ( abcd ) n µ n ( a , b , c , d ; q ) = Cat − Cat , 2 2 � 2 n � 1 where Cat ( n ) = if n is a nonnegative integer, and Cat ( n ) = 0 n + 1 n otherwise.

  39. 20 / 28 q -Hermite polynomials

  40. 20 / 28 q -Hermite polynomials

  41. 20 / 28 q -Hermite polynomials

  42. 21 / 28 Back to the definition of µ n ( a , b , c , d ; q ) Recall � 1 � π dx x n w ( x ) ( cos θ ) n w ( cos θ ) d θ, µ n ( a , b , c , d ; q ) = C √ 1 − x 2 = C − 1 0 where ( e 2 i θ , e − 2 i θ ) ∞ w ( cos θ, a , b , c , d ; q ) = ( ae i θ , ae − i θ , be i θ , be − i θ , ce i θ , ce − i θ , de i θ , de − i θ ) ∞ .

  43. 21 / 28 Back to the definition of µ n ( a , b , c , d ; q ) Recall � 1 � π dx x n w ( x ) ( cos θ ) n w ( cos θ ) d θ, µ n ( a , b , c , d ; q ) = C √ 1 − x 2 = C − 1 0 where ( e 2 i θ , e − 2 i θ ) ∞ w ( cos θ, a , b , c , d ; q ) = ( ae i θ , ae − i θ , be i θ , be − i θ , ce i θ , ce − i θ , de i θ , de − i θ ) ∞ . Let � 1 � π I n = ( q ) ∞ 1 − x 2 = ( q ) ∞ dx x n w ( x ) ( cos θ ) n w ( cos θ ) d θ √ 2 π 2 π − 1 0

  44. 21 / 28 Back to the definition of µ n ( a , b , c , d ; q ) Recall � 1 � π dx x n w ( x ) ( cos θ ) n w ( cos θ ) d θ, µ n ( a , b , c , d ; q ) = C √ 1 − x 2 = C − 1 0 where ( e 2 i θ , e − 2 i θ ) ∞ w ( cos θ, a , b , c , d ; q ) = ( ae i θ , ae − i θ , be i θ , be − i θ , ce i θ , ce − i θ , de i θ , de − i θ ) ∞ . Let � 1 � π I n = ( q ) ∞ 1 − x 2 = ( q ) ∞ dx x n w ( x ) ( cos θ ) n w ( cos θ ) d θ √ 2 π 2 π − 1 0 Then the normalized n th moment is µ n = I n I 0 .

  45. 21 / 28 Back to the definition of µ n ( a , b , c , d ; q ) Recall � 1 � π dx x n w ( x ) ( cos θ ) n w ( cos θ ) d θ, µ n ( a , b , c , d ; q ) = C √ 1 − x 2 = C − 1 0 where ( e 2 i θ , e − 2 i θ ) ∞ w ( cos θ, a , b , c , d ; q ) = ( ae i θ , ae − i θ , be i θ , be − i θ , ce i θ , ce − i θ , de i θ , de − i θ ) ∞ . Let � 1 � π I n = ( q ) ∞ 1 − x 2 = ( q ) ∞ dx x n w ( x ) ( cos θ ) n w ( cos θ ) d θ √ 2 π 2 π − 1 0 Then the normalized n th moment is µ n = I n I 0 . I 0 is the Askey-Wilson integral � 1 I 0 = ( q ) ∞ ( abcd ) ∞ dx w ( x ) √ 1 − x 2 = ( ab , ac , ad , bc , bd , cd ) ∞ . 2 π − 1

  46. 22 / 28 q -Hermite polynomials Ismail, Stanton, and Viennot computed I 0 using q -Hermite polynomials.

  47. 22 / 28 q -Hermite polynomials Ismail, Stanton, and Viennot computed I 0 using q -Hermite polynomials. The q -Hermite polynomials H n ( x | q ) are defined by � H n ( cos θ | q ) z n 1 ( q ) n = ( ze i θ , ze − i θ ) ∞ n ≥ 0

  48. 22 / 28 q -Hermite polynomials Ismail, Stanton, and Viennot computed I 0 using q -Hermite polynomials. The q -Hermite polynomials H n ( x | q ) are defined by � H n ( cos θ | q ) z n 1 ( q ) n = ( ze i θ , ze − i θ ) ∞ n ≥ 0 � π L ( H n H m ) = ( q ) ∞ H n ( cos θ | q ) H m ( cos θ | q )( e 2 i θ , e − 2 i θ ) ∞ d θ = 0 , n � = m 2 π 0

  49. 22 / 28 q -Hermite polynomials Ismail, Stanton, and Viennot computed I 0 using q -Hermite polynomials. The q -Hermite polynomials H n ( x | q ) are defined by � H n ( cos θ | q ) z n 1 ( q ) n = ( ze i θ , ze − i θ ) ∞ n ≥ 0 � π L ( H n H m ) = ( q ) ∞ H n ( cos θ | q ) H m ( cos θ | q )( e 2 i θ , e − 2 i θ ) ∞ d θ = 0 , n � = m 2 π 0 Thus ( e 2 i θ , e − 2 i θ ) ∞ w ( cos θ ) = ( ae i θ , ae − i θ , be i θ , be − i θ , ce i θ , ce − i θ , de i θ , de − i θ ) ∞ � a n 1 b n 2 c n 3 d n 4 H n 1 H n 2 H n 3 H n 4 ( e 2 i θ , e − 2 i θ ) ∞ = ( q ) n 1 ( q ) n 2 ( q ) n 3 ( q ) n 4 n 1 , n 2 , n 3 , n 4 ≥ 0

  50. 22 / 28 q -Hermite polynomials Ismail, Stanton, and Viennot computed I 0 using q -Hermite polynomials. The q -Hermite polynomials H n ( x | q ) are defined by � H n ( cos θ | q ) z n 1 ( q ) n = ( ze i θ , ze − i θ ) ∞ n ≥ 0 � π L ( H n H m ) = ( q ) ∞ H n ( cos θ | q ) H m ( cos θ | q )( e 2 i θ , e − 2 i θ ) ∞ d θ = 0 , n � = m 2 π 0 Thus ( e 2 i θ , e − 2 i θ ) ∞ w ( cos θ ) = ( ae i θ , ae − i θ , be i θ , be − i θ , ce i θ , ce − i θ , de i θ , de − i θ ) ∞ � a n 1 b n 2 c n 3 d n 4 H n 1 H n 2 H n 3 H n 4 ( e 2 i θ , e − 2 i θ ) ∞ = ( q ) n 1 ( q ) n 2 ( q ) n 3 ( q ) n 4 n 1 , n 2 , n 3 , n 4 ≥ 0 We can write � π � a n 1 b n 2 c n 3 d n 4 I 0 = ( q ) ∞ w ( cos θ ) d θ = L ( H n 1 H n 2 H n 3 H n 4 ) 2 π ( q ) n 1 ( q ) n 2 ( q ) n 3 ( q ) n 4 0 n 1 , n 2 , n 3 , n 4 ≥ 0

  51. 23 / 28 Combinatorial description for I 0 Theorem (Ismail, Stanton, and Viennot (1985)) � � a n 1 � b n 2 � c n 3 � d n 4 � q cr ( σ ) I 0 = [ n 1 ] q ![ n 2 ] q ![ n 3 ] q ![ n 4 ] q ! n 1 , n 2 , n 3 , n 4 ≥ 0 σ ∈PM ( n 1 , n 2 , n 3 , n 4 ) a = a / √ 1 − q , � b = b / √ 1 − q , � c = c / √ 1 − q , � d = d / √ 1 − q and where � PM ( n 1 , n 2 , n 3 , n 4 ) is the set of perfect matchings on [ n 1 ] ⊎ [ n 2 ] ⊎ [ n 3 ] ⊎ [ n 4 ] without homogeneous edges. n 1 n 2 n 3 n 4

  52. 23 / 28 Combinatorial description for I 0 Theorem (Ismail, Stanton, and Viennot (1985)) � � a n 1 � b n 2 � c n 3 � d n 4 � q cr ( σ ) I 0 = [ n 1 ] q ![ n 2 ] q ![ n 3 ] q ![ n 4 ] q ! n 1 , n 2 , n 3 , n 4 ≥ 0 σ ∈PM ( n 1 , n 2 , n 3 , n 4 ) a = a / √ 1 − q , � b = b / √ 1 − q , � c = c / √ 1 − q , � d = d / √ 1 − q and where � PM ( n 1 , n 2 , n 3 , n 4 ) is the set of perfect matchings on [ n 1 ] ⊎ [ n 2 ] ⊎ [ n 3 ] ⊎ [ n 4 ] without homogeneous edges. n 1 n 2 n 3 n 4 Question How about I n ?

  53. 24 / 28 Combinatorial description for I n I 0 is the generating function for perfect matchings with 4 sections: � π � a n 1 b n 2 c n 3 d n 4 I 0 = ( q ) ∞ w ( cos θ ) d θ = L ( H n 1 H n 2 H n 3 H n 4 ) 2 π ( q ) n 1 ( q ) n 2 ( q ) n 3 ( q ) n 4 0 n 1 , n 2 , n 3 , n 4 ≥ 0

  54. 24 / 28 Combinatorial description for I n I 0 is the generating function for perfect matchings with 4 sections: � π � a n 1 b n 2 c n 3 d n 4 I 0 = ( q ) ∞ w ( cos θ ) d θ = L ( H n 1 H n 2 H n 3 H n 4 ) 2 π ( q ) n 1 ( q ) n 2 ( q ) n 3 ( q ) n 4 0 n 1 , n 2 , n 3 , n 4 ≥ 0 I n is the generating function for perfect matchings with 5 sections: � π � a n 1 b n 2 c n 3 d n 4 I n = ( q ) ∞ ( cos θ ) n w ( cos θ ) d θ = L ( x n H n 1 H n 2 H n 3 H n 4 ) 2 π ( q ) n 1 ( q ) n 2 ( q ) n 3 ( q ) n 4 0 n 1 , n 2 , n 3 , n 4 ≥ 0

  55. 24 / 28 Combinatorial description for I n I 0 is the generating function for perfect matchings with 4 sections: � π � a n 1 b n 2 c n 3 d n 4 I 0 = ( q ) ∞ w ( cos θ ) d θ = L ( H n 1 H n 2 H n 3 H n 4 ) 2 π ( q ) n 1 ( q ) n 2 ( q ) n 3 ( q ) n 4 0 n 1 , n 2 , n 3 , n 4 ≥ 0 I n is the generating function for perfect matchings with 5 sections: � π � a n 1 b n 2 c n 3 d n 4 I n = ( q ) ∞ ( cos θ ) n w ( cos θ ) d θ = L ( x n H n 1 H n 2 H n 3 H n 4 ) 2 π ( q ) n 1 ( q ) n 2 ( q ) n 3 ( q ) n 4 0 n 1 , n 2 , n 3 , n 4 ≥ 0 Theorem (K., Stanton, 2012) � √ 1 − q � n � a n 1 � c n 3 � � b n 2 � d n 4 � q cr ( σ ) I n = [ n 1 ] q ![ n 2 ] q ![ n 3 ] q ![ n 4 ] q ! 2 n 1 , n 2 , n 3 , n 4 ≥ 0 σ ∈PM n ( n 1 , n 2 , n 3 , n 4 ) where PM n ( n 1 , n 2 , n 3 , n 4 ) is the set of perfect matchings on [ n ] ⊎ [ n 1 ] ⊎ [ n 2 ] ⊎ [ n 3 ] ⊎ [ n 4 ] with homogeneous edges only in the first section. n 1 n 2 n 3 n 4 n

  56. 25 / 28 Combinatorial intepretation for µ n ( a , b , c , d ; q ) Theorem (K., Stanton, 2012) 2 n µ n ( a , b , c , d ; q ) = ( 1 − q ) n / 2 I n / I 0 where I n is the generating function for n n 1 n 2 n 3 n 4

  57. 25 / 28 Combinatorial intepretation for µ n ( a , b , c , d ; q ) Theorem (K., Stanton, 2012) 2 n µ n ( a , b , c , d ; q ) = ( 1 − q ) n / 2 I n / I 0 where I n is the generating function for n n 1 n 2 n 3 n 4 Theorem (K., Stanton, 2012) �� � � �� � n � a α b β c γ d δ ( ac ) β ( bd ) γ n n 2 n µ n ( a , b , c , d ; q ) = − n − k n − k − 1 ( abcd ) β + γ 2 2 k = 0 α + β + γ + δ + 2 t = k � � � � � � α + β + γ + t β + γ + δ + t δ + α + t × ( − 1 ) t q ( t + 1 2 ) α β, γ, δ + t δ q q q

  58. 26 / 28 Corollaries Corollary (K., Stanton, 2012) �� � � �� � n n n 2 n µ n ( a , b , c , 0 ; q ) = − n − k n − k − 1 2 2 k = 0 � � � � � � � u + v + t v + w + t w + u + t a u b v c w ( − 1 ) t q ( t + 1 2 ) × . v w u u + v + w + 2 t = k q q q

  59. 26 / 28 Corollaries Corollary (K., Stanton, 2012) �� � � �� � n n n 2 n µ n ( a , b , c , 0 ; q ) = − n − k n − k − 1 2 2 k = 0 � � � � � � � u + v + t v + w + t w + u + t a u b v c w ( − 1 ) t q ( t + 1 2 ) × . v w u u + v + w + 2 t = k q q q Corollary (K., Stanton, 2012) �� � � �� � n � n n 1 k − A − B 2 n µ n ( a , b , q / a , q / b ; q ) = a A b B q − 2 n − k n − k − 1 [ k + 1 ] q 2 2 k = 0 | A | + | B |≤ k A + B ≡ k mod 2

  60. 26 / 28 Corollaries Corollary (K., Stanton, 2012) �� � � �� � n n n 2 n µ n ( a , b , c , 0 ; q ) = − n − k n − k − 1 2 2 k = 0 � � � � � � � u + v + t v + w + t w + u + t a u b v c w ( − 1 ) t q ( t + 1 2 ) × . v w u u + v + w + 2 t = k q q q Corollary (K., Stanton, 2012) �� � � �� � n � n n 1 k − A − B 2 n µ n ( a , b , q / a , q / b ; q ) = a A b B q − 2 n − k n − k − 1 [ k + 1 ] q 2 2 k = 0 | A | + | B |≤ k A + B ≡ k mod 2 Corollary (K., Stanton, 2012) [ n + 1 ] q ! 2 n µ n ( a , b , q / a , q / b ; q ) is a Laurent polynomial in a and b whose coefficients are positive polynomials in q .

  61. 27 / 28 Open problems Problem Find a combinatorial proof of �� � � �� � n � n n 1 k − A − B 2 n µ n ( a , b , q / a , q / b ; q ) = a A b B q − 2 n − k n − k − 1 [ k + 1 ] q 2 2 k = 0 | A | + | B |≤ k A + B ≡ k mod 2

  62. 27 / 28 Open problems Problem Find a combinatorial proof of �� � � �� � n � n n 1 k − A − B 2 n µ n ( a , b , q / a , q / b ; q ) = a A b B q − 2 n − k n − k − 1 [ k + 1 ] q 2 2 k = 0 | A | + | B |≤ k A + B ≡ k mod 2 If ac = q and bd = q ,

  63. 27 / 28 Open problems Problem Find a combinatorial proof of �� � � �� � n � n n 1 k − A − B 2 n µ n ( a , b , q / a , q / b ; q ) = a A b B q − 2 n − k n − k − 1 [ k + 1 ] q 2 2 k = 0 | A | + | B |≤ k A + B ≡ k mod 2 If ac = q and bd = q , Corollary (K., Stanton, 2012) [ n + 1 ] q ! 2 n µ n ( a , b , q / a , q / b ; q ) is a Laurent polynomial in a and b whose coefficients are positive polynomials in q .

  64. 27 / 28 Open problems Problem Find a combinatorial proof of �� � � �� � n � n n 1 k − A − B 2 n µ n ( a , b , q / a , q / b ; q ) = a A b B q − 2 n − k n − k − 1 [ k + 1 ] q 2 2 k = 0 | A | + | B |≤ k A + B ≡ k mod 2 If ac = q and bd = q , Corollary (K., Stanton, 2012) [ n + 1 ] q ! 2 n µ n ( a , b , q / a , q / b ; q ) is a Laurent polynomial in a and b whose coefficients are positive polynomials in q . If ac = q i and bd = q j ,

  65. 27 / 28 Open problems Problem Find a combinatorial proof of �� � � �� � n � n n 1 k − A − B 2 n µ n ( a , b , q / a , q / b ; q ) = a A b B q − 2 n − k n − k − 1 [ k + 1 ] q 2 2 k = 0 | A | + | B |≤ k A + B ≡ k mod 2 If ac = q and bd = q , Corollary (K., Stanton, 2012) [ n + 1 ] q ! 2 n µ n ( a , b , q / a , q / b ; q ) is a Laurent polynomial in a and b whose coefficients are positive polynomials in q . If ac = q i and bd = q j , Conjecture For positive integers i and j , 2 n [ n + i + j − 1 ] q ! µ n ( a , b , q i / a , q j / b ; q ) is a Laurent polynomial in a , b whose coefficients are positive polynomials in q .

  66. 28 / 28 Math Genealogy

  67. 28 / 28 Math Genealogy SCHMIDT

  68. 28 / 28 Math Genealogy SCHMIDT BOCHNER

  69. 28 / 28 Math Genealogy SCHMIDT BOCHNER ASKEY

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend