the strong asymptotic freeness of large random and
play

The strong asymptotic freeness of large random and deterministic - PowerPoint PPT Presentation

The strong asymptotic freeness of large random and deterministic matrices Camille Male Universit e Paris Diderot (Paris 7) Workshop random matrices and their applications, Telecom Paristech, October 8-10 Camille Male (Univ. Pars 7) The


  1. The strong asymptotic freeness of large random and deterministic matrices Camille Male Universit´ e Paris Diderot (Paris 7) Workshop random matrices and their applications, Telecom Paristech, October 8-10 Camille Male (Univ. Pars 7) The strong asymptotic freeness 1 / 24

  2. Introduction Statement of results Camille Male (Univ. Pars 7) The strong asymptotic freeness 2 / 24

  3. Introduction No eigenvalues outside a neighborhood of the lim. support Consider the N by N ′ so called ”separable covariance matrix“ H N , N ′ = A N X N , N ′ B N ′ X ∗ N , N ′ A N , where √ N ′ X N , N ′ : size N × N ′ with i.i.d. standard entries ∼ µ , • • A N , B N ≥ 0: size N × N and N ′ × N ′ resp., s.t. L A N → L a , L B N ′ → L b . Camille Male (Univ. Pars 7) The strong asymptotic freeness 3 / 24

  4. Introduction No eigenvalues outside a neighborhood of the lim. support Consider the N by N ′ so called ”separable covariance matrix“ H N , N ′ = A N X N , N ′ B N ′ X ∗ N , N ′ A N , where √ N ′ X N , N ′ : size N × N ′ with i.i.d. standard entries ∼ µ , • • A N , B N ≥ 0: size N × N and N ′ × N ′ resp., s.t. L A N → L a , L B N ′ → L b . Theorem: Boutet de Mondvel, Khorunzhy and Vasilchuck (96) As N , N ′ → ∞ with c N , N ′ = N N ′ → c > 0, L H N , N ′ → µ ( c ) L a , L b a.s. Theorem: Bai and Silverstein (98), Paul and Silverstein (09) If moreover µ has a finite fourth moment and for N large enough, ( c N , N ′ ) L AN , L BN ⊂ Supp µ ( c ) L a , L b , then, a.s. ∀ ε and for N large enough, Supp µ Sp H N , N ′ ⊂ Supp µ ( c ) L a , L b + ( − ε, ε ) . Camille Male (Univ. Pars 7) The strong asymptotic freeness 3 / 24

  5. Introduction Soft version Theorem : M. (11), Collins, M. (11) X N N × N GUE matrix, U N N × N Haar matrix on U N , Y N = ( Y ( N ) , . . . , Y ( N ) ) arbitrary random N × N matrices, p 1 X N , U N and Y N being independent. Camille Male (Univ. Pars 7) The strong asymptotic freeness 4 / 24

  6. Introduction Soft version Theorem : M. (11), Collins, M. (11) X N N × N GUE matrix, U N N × N Haar matrix on U N , Y N = ( Y ( N ) , . . . , Y ( N ) ) arbitrary random N × N matrices, p 1 X N , U N and Y N being independent. Assume that for any Hermitian matrix H N = P ( Y N , Y ∗ N ), 1 Convergence of the empirical eigenvalues distribution a.s. L H N − N →∞ L h with compact support, → 2 Convergence of the support a.s. for N large enough, Sp H N ⊂ Supp L h + ( − ε, ε ) Then, almost surely, the same properties hold for any Hermitian matrix H N = P ( X N , U N , U ∗ N , Y N , Y ∗ N ) . Camille Male (Univ. Pars 7) The strong asymptotic freeness 4 / 24

  7. Introduction Non commutative probability space Definition : C ∗ -probability space ( A , · ∗ , τ, � · � ) A : C ∗ -algebra, · ∗ : antilinear involution such that ( ab ) ∗ = b ∗ a ∗ ∀ a , b ∈ A , τ : linear form such that τ [ 1 ] = 1, τ is tracial: τ [ ab ] = τ [ ba ] ∀ a , b ∈ A , τ is a faithful state: τ [ a ∗ a ] ≥ 0 , ∀ a ∈ A and vanishes iff a = 0. Examples Commutative space: Given a probability space (Ω , F , P ), consider ( L ∞ (Ω , µ ) , ¯ · , E , � · � ∞ ), Matrix spaces: ( M N ( C ) , · ∗ , τ N := 1 N Tr , � · � ). Camille Male (Univ. Pars 7) The strong asymptotic freeness 5 / 24

  8. Introduction Non commutative random variables Proposition If aa ∗ = a ∗ a then there exists a compactly supported probability measure P ( a , a ∗ ) � � � µ a on C such that ∀ P polynomial τ = P ( z , ¯ z ) d µ a ( z ). Moreover � a � = sup {| t | | t ∈ Supp µ a . If A N is an N by N normal matrix, then µ A N = L A N . Camille Male (Univ. Pars 7) The strong asymptotic freeness 6 / 24

  9. Introduction Non commutative random variables Proposition If aa ∗ = a ∗ a then there exists a compactly supported probability measure P ( a , a ∗ ) � � � µ a on C such that ∀ P polynomial τ = P ( z , ¯ z ) d µ a ( z ). Moreover � a � = sup {| t | | t ∈ Supp µ a . If A N is an N by N normal matrix, then µ A N = L A N . Definition � P ( a , a ∗ ) � The map τ a : P �→ τ : law of a = ( a 1 , . . . , a p ). Convergence in n.c. law a N → a : P ( a N , a ∗ P ( a , a ∗ ) � � � � N ) − → , ∀ P , τ N →∞ τ Strong convergence in n.c. law a N → a : CV in n.c. law and � − � P ( a N , a ∗ � � � � P ( a , a ∗ ) � N ) → � , ∀ P . N →∞ Camille Male (Univ. Pars 7) The strong asymptotic freeness 6 / 24

  10. Introduction Interest of this notion for large matrices Let A N = ( A ( N ) , . . . , A ( N ) ) be a family of N by N matrices, and p 1 a = ( a 1 , . . . , a p ) in ( A , . ∗ , τ ). L n . c . N →∞ a N ⇔ ∀ H N = P ( A N , A ∗ Then A N − → N ) Hermitian N →∞ µ h , where h = P ( a N , a ∗ L H N − → N ) . L n . c . N →∞ a N strongly ⇔ ∀ H N = P ( A N , A ∗ Moreover A N − → N ) Hermitian � N →∞ µ h , where h = P ( a N , a ∗ L H N − → N ) , ∀ ε > 0 , ∀ N large , Sp H N ⊂ Supp µ h + ( − ε, ε ) . Camille Male (Univ. Pars 7) The strong asymptotic freeness 7 / 24

  11. Introduction The relation of freeness Definition of freeness The sub-algebras A 1 , . . . , A p are free iff � � � � a j ∈ A i j , i j � = i j +1 , and τ = 0 , ∀ j ≥ 1 ⇒ τ ( a 1 a 2 . . . a n ) = 0 ∀ n ≥ 1 . a j Theorem : Voiculescu X N N × N GUE matrix, U N N × N Haar matrix on U N , Y N = ( Y ( N ) , . . . , Y ( N ) ) arbitrary random N × N matrices, uniformly r 1 bounded, X N , U N and Y N being independent. N →∞ y , then ( X N , U N , Y N ) L n . c . L n . c . If Y N − → N →∞ ( x , u , y ), where x , u and y are free. − → Camille Male (Univ. Pars 7) The strong asymptotic freeness 8 / 24

  12. Introduction The asymptotic freeness of large random matrices Definition : Freeness The sub-algebras A 1 , . . . , A p are free iff � � � � a j ∈ A i j , i j � = i j +1 , and τ = 0 , ∀ j ≥ 1 ⇒ τ ( a 1 a 2 . . . a n ) = 0 ∀ n ≥ 1 . a j Theorem : Voiculescu X N N × N GUE matrix, U N N × N Haar matrix on U N , Y N = ( Y ( N ) , . . . , Y ( N ) ) arbitrary random N × N matrices, uniformly p 1 bounded, X N , U N and Y N being independent. N →∞ y , then ( X N , U N , Y N ) L n . c . L n . c . If Y N − → N →∞ ( x , u , y ), where x , u and y are free. − → Camille Male (Univ. Pars 7) The strong asymptotic freeness 9 / 24

  13. Introduction The strong asymptotic freeness of large random matrices Theorem : Haagerup and Thorbjørnsen, 05 Let X N = ( X ( N ) , . . . , X ( N ) ) be independent GUE matrices. Then p 1 L n . c . N →∞ x strongly, where x = ( x 1 , . . . , x p ) family of free semi-circular − → X N n.c.r.v. Let Y N = ( Y ( N ) , . . . , Y ( N ) ) arbitrary random N × N matrices, such that p 1 L n . c . Y N N →∞ y strongly − → Theorem : M., 11, Collins, M., 11 Let X N be a GUE matrix, U N be a Haar matrix on U N , such that X N , U N and Y N are independent. Then ( X N , U N , Y N ) L n . c . N →∞ ( x , u , y ) strongly, − → where x semi-circular n.c.r.v., u Haar unitary n.c.r.v. and x , u , y are free. Camille Male (Univ. Pars 7) The strong asymptotic freeness 10 / 24

  14. Introduction (Non direct) consequence Proposition: the sum of two Hermitian random matrices, Collins, M. (11) Let A N , B N be two N × N independent Hermitian random matrices. Assume that: 1 the law of one of the matrices is invariant under unitary conjugacy, 2 a.s. L A N − N →∞ L a and L B N − → N →∞ L b compactly supported → 3 a.s. the spectra of the matrices converges to the support of the limiting distribution. Then, a.s. the spectrum of A N + B N converges to the support of µ ⊞ ν , where ⊞ denotes the free additive convolution. Remark: We do not assume that ( A N , B N ) converges strongly ! Camille Male (Univ. Pars 7) The strong asymptotic freeness 11 / 24

  15. Introduction (Non direct) consequence Consider the N by N ′ separable covariance matrix H N , N ′ = A N X N , N ′ B N ′ X ∗ N , N ′ A N , where √ N ′ X N , N ′ is Gaussian, the common distribution µ of the entries of N = α n , N ′ = β n so that c N , N ′ = N N ′ = α β = c . A N and B N converges strongly in n.c. law. Then, a.s. for n large enough, no eigenvalues of H N , N ′ are outside a small neighborhood of the support of the limiting distribution Camille Male (Univ. Pars 7) The strong asymptotic freeness 12 / 24

  16. Proof Idea of the proof Camille Male (Univ. Pars 7) The strong asymptotic freeness 13 / 24

  17. Proof From ( X N , Y N ) to ( U N , Y N ) Based on a coupling ( X N , U N ) between a GUE and a Haar matrix: • Let Z N be a Hermitian matrix. If ( Z N , Y N ) L n . c . N →∞ ( z , y ) strongly and − → f N : R → C CV uniformly to f , then ( f N ( Z N ) , Y N ) L n . c . N →∞ ( f ( z ) , y ) strongly. − → • Let X N = V N ∆ N V ∗ N GUE matrix, F N the cumulative function of its eigenvalues. Then, F N − N →∞ F uniformly and → N = V N Diag ( 1 N , . . . , N H N := F N ( X N ) = V N F N (∆ N ) V ∗ N ) V ∗ N . • Let G − 1 be the inverse cumulative function of the eigenvalues of a Haar N N →∞ G − 1 uniformly and matrix, independent of X N , Y N . Then G − 1 − → N U N := G − 1 N ( H N ) is a Haar matrix. Camille Male (Univ. Pars 7) The strong asymptotic freeness 14 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend