few body in eft
play

Few-Body in EFT Gautam Rupak Mississippi State University EMMI: - PowerPoint PPT Presentation

Few-Body in EFT Gautam Rupak Mississippi State University EMMI: The Systematic Treatment of the Coulomb Interaction in Few-Body Systems Darmstadt, May 30 - June 3, 2016 Outline N-d scattering Field-redefinition p-p fusion A


  1. Few-Body in EFT Gautam Rupak Mississippi State University EMMI: The Systematic Treatment of the Coulomb Interaction in Few-Body Systems Darmstadt, May 30 - June 3, 2016

  2. Outline • N-d scattering • Field-redefinition • p-p fusion

  3. A little detour on the lattice • Consider: ; a ( b, γ ) c a ( b, c ) d • Need effective “cluster” Hamiltonian -- acts in cluster coordinates, spins,etc. • Calculate reaction with cluster Hamiltonian. Many possibilities --- traditional methods, continuum EFT, lattice method

  4. Adiabatic Projection Method Initial state | ~ R i Evolved state | ~ R i τ = e − τ H | ~ R i τ h ~ R 0 | H | ~ R i τ Energy measurements in cluster basis. Divide by the norm matrix as these are R 0 = ⌧ h ~ R | ~ not orthogonal basis R 0 i ⌧ [ N ⌧ ] ~ R, ~ Microscopic Hamiltonian L 3( A − 1) Cluster Hamiltonian smaller matrices in practice!! L 3 -- acts on the cluster CM and spins

  5. Neutron-Deuteron System Convergence: L =7, b =1/100 MeV − 1 25 Pine, Lee, Rupak, EPJA 2013 20 15 E (MeV) 10 5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 τ (MeV − 1 ) - grouping R found efficient ∼ 30 × 30

  6. Something still missing ... long range Coulomb · · · ✓ α ✓ α ◆ ◆ α µ O O p 2 p 2 p

  7. Spherical-wall method ψ short ( r ) ∝ j 0 ( kr ) cot δ s − n 0 ( kr ) , ψ Coulomb ( r ) ∝ F 0 ( kr ) cot δ sc + G 0 ( kr ) R w Adjust from free theory: j 0 ( k 0 R w ) = 0 IR scale setting − L/ 2 L/ 2 Hard spherical wall boundary conditions, Borasoy et al. 2007 Carlson et al. 1984 Even older ?

  8. p-p Coulomb Subtracted Phase Shift 60 3% error in fits Analytic 50 b=1/100 MeV − 1 b=1/200 MeV − 1 δ sc (degree) 40 T = T c + T sc 30 e 2 i σ − 1 T c ≈ 2 π µ 2 ip 20 e 2 i ( σ + δ sc ) − 1 T ≈ 2 π 10 Rupak, Ravi PLB 2014 µ 2 ip 0 0 5 10 15 20 25 30 p (MeV)

  9. Improvement 0 0 0 0 0 0 n − d -1 b =1/100 MeV n − d (EFT) − 15 − 15 − 15 − 15 − 15 -1 p − d Breakup Breakup Breakup Breakup Breakup b =1/150 MeV -20 breakup p − d (EFT) -1 b =1/200 MeV δ 0 (degrees) − 30 − 30 − 30 − 30 − 30 δ 0 (degree) STM -40 − 45 − 45 − 45 − 45 − 45 Quartet − S Quartet − S Quartet − S Quartet − S Quartet − S − 60 − 60 − 60 − 60 − 60 -60 − 75 − 75 − 75 − 75 − 75 -80 0 50 100 p (MeV) − 90 − 90 − 90 − 90 − 90 0 0 0 0 0 20 20 20 20 20 40 40 40 40 40 60 60 60 60 60 80 80 80 80 80 100 100 100 100 100 120 120 120 120 120 140 140 140 140 140 p (MeV) Elhatisari, Lee, Meißner, Rupak (2016) Pine, Lee, Rupak ( 2013 )

  10. n-d doublet channel � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � - � - � ( � / � ) ��� � � � - � p cot δ = − 1 /a + rp 2 / 2 � � 1 + p 2 /p 2 - � 0 � a ∼ 0 . 65 fm , - � � � � � � � � r ∼ − 150 fm , � � � � � - � � � � � � � � � � � � � � � p 0 ∼ 13 MeV � � � � � � � � � � � � � � � � � � � � � � - � ��� ��� ��� ��� ��� ��� ��� � / � ERE form van Oers & Seagrave (1967) -what EFT for modified ERE Virtual state at 0.5 MeV Girard & Fuda (1979) - Efimov physics

  11. Efimov plot Preliminary Higa, Rupak, Vaghani, van Kolck Shallow virtual to bound state lattice QCD with B field, even with heavy pions?

  12. Phillips-Girard-Fuda �� � �� � � ( ��� ) � �� Preliminary � � � � ��� ��� ��� ��� ��� ��� ��� � � ( ��� ) 3-body correlation

  13. Adhikari-Torreao ��� Preliminary ��� � � ( ��� ) ��� � ��� Adhikari - Torreao � � ��� � Virtual � � � ��� � � � � � ��� � � - �� - �� - �� - �� � � � ( �� )

  14. Field Redefinition 2 → r → → → → 2 M ) N + d † L = N † ( i D t ) d t + d † D t ) d s + t † ( i ∂ 0 + t ( � i s ( � i D Ω ) t † NP i N + h.c ) � g s ( d a † N ¯ � g t ( d i P a N + h.c ) t s � w t ( t † σ i Nd i t + h.c. ) � w s ( t † τ a Nd a s + h.c. ) Start here and write in terms of only nucleon fields 2 → r → → D t = ( � i 4 M + ∆ t ) , � i ∂ 0 � alternatives possible 2 → → r → D s = ( � i 4 M + ∆ s ) , � i ∂ 0 � 2 → r → → D Ω = ( i ∂ 0 + 6 M + ∆ Ω ) . i

  15. Integrate out fields ∂ L ∂ t † = 0 → D Ω ) − 1 ( w t σ i Nd i t + w s τ a Nd a ⇒ t = ( i s ) → t † ( i D Ω ) t You see that it generates dimer-nucleon interaction ... more to come ∂ L † = 0 ∂ d i t j i → → ⇒ d j t ) − 1 [ g t NP i N + w t w s N † σ i τ a ( i D Ω ) − 1 Nd a t = ( − i s ] D i j → → → t N † σ i σ j ( i D Ω ) − 1 N D t δ ij − w 2 t = − i − i D Now things get interesting

  16. Finally integrate the last dimer field and write 2 → 2 M ) N � g 2 i j → r → L = N † ( i 2 [( NP i N ) † ( � i t t ) − 1 NP j N + h.c. ] ∂ 0 + D � 1 k l a b → → → P a N ) † + g t w t w s ( NP k N ) † ( � i 2[ g s ( N ¯ t ) − 1 N † ( i D Ω ) − 1 σ l τ a N ]( � i ) − 1 D D → i j → ⇥ [ g s N ¯ P b N + g t w t w s N † ( i D Ω ) − 1 σ i τ b N ( � i t ) − 1 NP j N ] + h.c. , D a b → → → s N † τ a τ b ( i D Ω ) − 1 N D s δ a b − w 2 ( − i ) = [ − i D i j → → → s N † ( i D Ω ) − 1 σ i τ a N ( − i t ) − 1 N † σ j τ b ( i D Ω ) − 1 N ] − w 2 t w 2 D -- generates higher-body terms -- need to remove time-derivatives

  17. Keep upto 3-body contact interactions 2 → D t ) − 1 δ i j + w 2 w 2 i j → → → r t ) − 1 = ( � i t N † σ i σ j ( i D Ω ) − 1 N + t 4 M ) N † σ i σ j N , ( � i ( i ∂ 0 + D ∆ 2 ∆ 3 t ∆ Ω t 2 → D s ) − 1 δ a b + w 2 w 2 a b → → a b → r → ) − 1 = ( � i s ) − 1 , s N † τ a τ b ( i D Ω ) − 1 N + s 4 M ) N † τ a τ b N ⌘ ( � i ( � i ( i ∂ 0 + D D ∆ 2 ∆ 3 s ∆ Ω s Almost home, and write 2 → 2 M ) N � g 2 i j → → r L = N † ( i 2 [( NP i N ) † ( � i t t ) − 1 NP j N + h.c. ] ∂ 0 + D � g 2 a b → 2 [( N ¯ s ) − 1 N ¯ s P a N ) † ( � i P b N + h.c. ] D → → → � g t g s w t w s [( N ¯ P a N ) † ( � i D s ) − 1 N † ( i D Ω ) − 1 σ i τ a N ( � i D t ) − 1 NP i N + h.c. ] ⌘ L 1 + L 2 + L 3 +...

  18. Field Redefinition To remove time-derivative from two-body try i N † ( NP i N ) + b 1 ¯ a N † ( N ¯ N → N + a 1 P † P † P a N ) Bedaque, Grießhammer (2000) Bedaque, Rupak, Grießhammer, Hammer (2003) After a good amount of elbow grease L 2 = � g 2 ( NP i N ) † NP i N � g 2 ( N ¯ P a N ) † N ¯ t s P a N ∆ t ∆ s g 2 g 2 2 2 ↔ ↔ t [( NP i N ) † ( N s [( NP a N ) † ( N P i N ) + h.c. ] � P a N ) + h.c. ] � r r 8 M ∆ 2 8 M ∆ 2 t s using a 1 = g 2 t / ∆ 2 t b 1 = g 2 s / ∆ 2 s

  19. Removing time-derivatives from three-body contact interaction requires, another field redefinition. However, the leading momentum independent term is simple  g 2  g 2 t w 2 + g 4 s w 2 + g 4 � � ( N ¯ P a N ) † N † τ a τ b N ( N ¯ t t ( NP i N ) † N † σ i σ j N ( NP j N ) − s s P b N ) − ∆ 2 6 ∆ 3 ∆ 2 6 ∆ 3 t ∆ Ω s ∆ Ω t s g 2 t g 2 g 2 t g 2  g t g s w t w s � [( N ¯ s s P a N ) † N † τ a σ i N ( NP i N ) + h.c. ] − − − 4 ∆ 2 4 ∆ t ∆ 2 ∆ t ∆ s ∆ Ω t ∆ s s Bedaque, Rupak, Grießhammer, Hammer (2003) Need to pull out the SU(4) symmetric piece

  20. p-p fusion p 1 Z i † h | NN ( s ; ~ N ( ~ p ) P ( s ) N ( ~ p k, p ) i = d Ω ˆ k/ 2 + ~ k/ 2 � ~ p ) | 0 i (2 ⇡ ) 3 p 4 ⇡ Projector cm, relative momentum h NN ( s 0 ; ~ k 0 , p 0 ) | NN ( s ; ~ k, p ) i = � (3) ( ~ k � ~ k 0 ) � ( p � p 0 ) � ss 0 with projectors = 1 P ( s ) P ( s 0 ) † i h X Tr 2 δ ss 0 Ave . pol Chen, Rupak, Savage (1999)

  21. k, p ) i = 1  † � Z d cos ✓ P ( s 0 ) P ( s 0 ) h NN ( s 0 ; ~ b O ab ; cd N c N d | NN ( s ; ~ k 0 , p 0 ) | N ⇤ a N ⇤ ab O ab ; cd ab 2 cd Chen, Rupak, Savage (1999) Fleming, Mehen, Stewart (2000) (+) d 3 q ( ~ q ) Z ~ p p p y ( − 2 µ ) 2 Z d hg A ( ~ ✏ ∗ ✏ ∗ ) x ˆ d × ~ ∼ q 2 + � 2 (2 ⇡ ) 3 project the appropriate p-wave channels r 32 π s-wave comparison | h d ; x | A − y | pp i | = g A C η γ 3 Λ ( p ) δ xy indices contracted

  22. Thank you

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend