search for neutrinoless double beta decay in nemo 3 and
play

Search for neutrinoless double beta decay in NEMO 3 and SuperNEMO - PowerPoint PPT Presentation

Search for neutrinoless double beta decay in NEMO 3 and SuperNEMO Yu. Shitov, IC Introduction to the -decay theory/experiment NEMO-3 detector and its results NEMO-3 detector and its results SuperNEMO: basic


  1. Search for neutrinoless double beta decay in NEMO 3 and SuperNEMO Yu. Shitov, IC � Introduction to the ββ ββ -decay theory/experiment ββ ββ � NEMO-3 detector and its results � NEMO-3 detector and its results � SuperNEMO: basic R&D directions and its current status � Conclusion Shitov Yuriy, IC HEP seminar, 16.01.2008 1/54

  2. Double beta decay basic statements ν : allowed SM process T 1/2 ~ 10 20 y ββ 2 ν ββ ββ ββ ν ν (A,Z+1) → (A,Z+2) + 2e - + 2 ν → 2p + 2e - + 2 ν (A,Z) → → → ν ν ( ν ( ( 2n → ( → → ν ν) ν ) ) ) ≥ 10 25 y ββ 0 ν ββ ββ ββ ν ν ν : beyond the SM T 1/2 ≥ ≥ ≥ (A,Z) Q ββ ββ ββ ββ → (A,Z+2) + 2e - ( → 2p + 2e - ) (A,Z) → → → ( 2n → ( ( → → ) ) ) (A,Z+2) Massive Majorana neutrinos (particle ≡ ≡ antiparticle) ≡ ≡ Happiness for theoreticians (many mechanisms proposed to describe the process) p n W − − − − e − − − − ν ν ν ν eR h ν ν M ν ν ν ν eL ν ν h W − − − − e − − − − n p (Q ββ ββ ~ MeV) ββ ββ Shitov Yuriy, IC HEP seminar, 16.01.2008 2/54

  3. Double beta decay basic formulas 2 ν ν − ν 0 0 1 0 0 v 2 2 7 2 0 v 2 = = ( ) ( , ) | | / ~ | | A T G Q Z M m m Q Z M ν 1 / 2 e - effective neutrino Majorana mass M 0ν : nuclear matrix element ������ G 0ν : phase space factor M : mass (g) � : efficiency K C.L. : confidence level N : Avogadro number t : exposition time (y) ~ 69 stable and N Bckg : background events/ (keV/kg/y) 28 α -unstable ββ isotopes ���������� � E : energy resolution (keV) Shitov Yuriy, IC HEP seminar, 16.01.2008 3/54

  4. Resent interest to 0 νββ νββ νββ -decay search νββ Great recent success in neutrino oscillation branch Strong support of 3 light active neutrino mixing theory Hot questions Hot questions Parameters defined Parameters defined ∆ m sol , θ sol , ∆ m atm , θ atm • existence of sterile neutrino(s) • θ 13 measurements New oscillation • precision of oscillation parameters experiments • neutrino nature (Dirac/Majorana) 0 νββ -decay •neutrino absolute scale and hierarchy pattern Shitov Yuriy, IC HEP seminar, 16.01.2008 4/54

  5. Neutrino mass hierarchy patterns and 0 νββ νββ νββ νββ -decay m 2 2 m 1 2 m 2 2 m 3 ? Degenerate Degenerate Inverted hierarchy Inverted hierarchy Normal hierarchy Normal hierarchy m 1 � m 2 � m 3 » |m i -m j | m 2 ~m 1 >m 3 m 3 > m 2 ~m 1 For sin 2 θ θ θ θ chooz = 0.03 Quasi-Degenerated(QD) : |<m ν ν >| < 0.7 eV (cosmology) ν ν ~ Inverted hierarchy (IH) : 20 meV < |<m ν ν >| < 55 meV ν ν ~ ~ Normale hierarchy(NH) : |<m ν ν >| < 20 meV ν ν ~ S. Pascoli, S.T. Petcov and T. Schwetz hep-ph/0505226, Mai 2005 Shitov Yuriy, IC HEP seminar, 16.01.2008 5/54

  6. Experimental difficulties to observe 0 νββ νββ νββ -decay νββ T 1/2 ≥ 10 26 > N A =6 ⋅ 10 23 → → 1 decay per 50 kg per year! → → Large mass of enriched ββ -isotope Now: Nearest future: Long-term future: tens of kg hundreds of kg tons Background Background • Natural background (<2614 keV) - extra-low setup radiopurity NEMO-3 (200 t) activity ~300 Bq, human body (60 kg) ~5000 Bq • Neutrons – active/passive shielding • Cosmics – deep underground sites for setup location Long-time exposition • years of data taking - setup stability required Shitov Yuriy, IC HEP seminar, 16.01.2008 6/54

  7. Resolution as key point (Q ββ ββ ~ MeV) ββ ββ Avignone, King, Zdesenko, New Journal of Physics 7 (2005) 6 Shitov Yuriy, IC HEP seminar, 16.01.2008 7/54

  8. Experimental techniques to observe ββ ββ -decay ββ ββ Experimental methods Tracko-calo TPC Calorimetric Geochemical E E 1 E 2 E 2 β 1 (A,Z-2)daughter θ β ββ -foil B B ββ ββ ββ ββ ββ -sample (A,Z) ββ ββ ββ ββ -foil ββ ββ Experimental output E1, E2, θ θ θ θ ββ ββ -daughter rate E1+E2 spectrum ββ ββ Shitov Yuriy, IC HEP seminar, 16.01.2008 8/54

  9. Calorimeter versus tracko-calo/TPC detectors Calorimetric Tracko-calo/TPC Experimental advantages • Real ββ ββ -observation. ββ ββ • Any ββ ββ -source can be measured ββ ββ • Larger mass • Potentially zero-background exp. • Better resolution • Test of different ββ0ν ββ0ν ββ0ν ββ0ν mechanisms in the • ~ 100% efficiency case of observation. Experimental drawbacks • A few ββ ββ -isotopes can be measured ββ ββ • difficult to accept large mass 76 Ge, 130 Te up to now. • smaller efficiency (for tracko-calo) • Unavoidable natural background. • worth resolution • We don’t see electrons, just energy • background (for TPC) released - no absolute proof, that we see ββ0ν ββ0ν -peak and not something else ( γ ββ0ν ββ0ν γ γ -line)! γ Shitov Yuriy, IC HEP seminar, 16.01.2008 9/54

  10. NEMO-3/SuperNEMO collaboration N eutrino E ttore M ajorana O bservatory ( N eutrino E xperiment on MO lybdenum – historical name) Japan Morocco U Saga USA Fes U MHC KEK INL U Osaka (U Texas) (U Texas) UK Finland Poland Russia JINR Dubna UCL U Jyvaskyla U Warsaw ITEP Moscow U Manchester Imperial College Kurchatov Institute Ukraine INR Kiev France ISMA Kharkov CEN Bordeaux IReS Strasbourg Slovakia LAL ORSAY (U. Bratislava) Spain LPC Caen U Valencia Czech Republic LSCE Gif/Yvette U Saragossa Charles U Praha U Barcelona IEAP CTU Praha ~ 80 physicists, 12 countries, 27 laboratories Shitov Yuriy, IC HEP seminar, 16.01.2008 10/54

  11. The NEMO3 host laboratory LABORATOIRE SOUTERRAIN DE MODANE Main hall 30 x 10m 2 (h 11m ) 2 smaller halls ( 18 m 2 and 21 m 2 ) gamma hall (70 m 2 ) Operators CEA/DSM & CNRS/IN2P3 Location Fréjus Tunnel (Italian-French border) Excavation 1983 Underground area main hall (30x10x11 m) + γ γ γ -spectroscopy γ hall (70 m 2 ) + 2 secondary halls of 18/21 m 2 Depth 1700 m (4800 mwe) > 400 m 2 Surface Permanent staff 8 Scientists users 100 Shitov Yuriy, IC HEP seminar, 16.01.2008 11/54

  12. The NEMO3 detector Fréjus Underground Laboratory : 4800 m.w.e. 20 sectors Source : 10 kg of ββ ββ ββ ββ isotopes cylindrical, S = 20 m 2 , 60 mg/cm 2 Tracking detector : drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter : Calorimeter : 1940 plastic scintillators 3 m coupled to low radioactivity PMTs Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water (~30 B (25 G) cm) + Wood (Top/Bottom/Gapes between water tanks) Able to identify e − − − − , e + + + + , γ γ and α γ γ α α α− − − − delayed Shitov Yuriy, IC HEP seminar, 16.01.2008 12/54

  13. NEMO3 sector Cathodic rings Wire chamber PMTs Calibration tube scintillators ββ ββ isotope foils ββ ββ Shitov Yuriy, IC HEP seminar, 16.01.2008 13/54

  14. Assembling of NEMO 3 August 2001 Location: LSM wood shield (Modane, France) water tanks magnet coil/shield Start taking data iron shield 14 February 2003 Opening Day, July 2002 Shitov Yuriy, IC HEP seminar, 16.01.2008 14/54

  15. ββ ββ ββ decay isotopes in NEMO-3 detector ββ 05 04 06 03 ββ2ν measurement ββ2ν ββ2ν ββ2ν 02 07 116 Cd 405 g 08 01 Q ββ = 2805 keV 96 Zr 9.4 g 09 00 Q ββ = 3350 keV 150 Nd 37.0 g 19 10 Q ββ = 3367 keV Q ββ = 3367 keV 18 11 48 Ca 7.0 g Q ββ = 4272 keV 17 12 130 Te 454 g 13 16 Q ββ = 2529 keV 14 15 External bkg 100 Mo 6.914 kg 82 Se nat Te 491 g 0.932 kg measurement Q ββ = 3034 keV Q ββ = 2995 keV Cu 621 g ββ0ν ββ0ν ββ0ν ββ0ν search (All enriched isotopes produced in Russia) Shitov Yuriy, IC HEP seminar, 16.01.2008 15/54

  16. ββ ββ -events selection in NEMO-3 ββ ββ ν event observed from 100 Mo Typical ββ ββ ββ 2 ν ββ ν ν Transverse view Run Number: 2040 Longitudinal Event Number: 9732 view Date: 2003-03-20 Vertex emission Vertex emission Deposited energy: E 1 +E 2 = 2088 keV Internal hypothesis: ( ∆ ∆ ∆ ∆ t) mes –( ∆ ∆ ∆ ∆ t) theo = 0.22 ns ( ∆ ∆ vertex) // = 5.7 mm ∆ ∆ Common vertex: ( ∆ ∆ vertex) ⊥ ∆ ∆ ⊥ = 2.1 mm ⊥ ⊥ Criteria to select ββ ββ ββ ββ events: Trigger : at least 1 PMT > 150 keV • 2 tracks with charge < 0 •external event rejection by TOF ≥ ≥ 3 Geiger hits (2 neighbour layers + 1) ≥ ≥ • 2 PMT, each > 200 keV • No other isolated PMT hit Trigger rate = 7 Hz • PMT-Track association ( γ rejection) • Common vertex ββ ββ events: 1 event every 2.5 minutes ββ ββ • No delayed track ( 214 Bi rejection) Shitov Yuriy, IC HEP seminar, 16.01.2008 16/54

  17. Background tagging in NEMO-3 2e - event Τ l 208 208 Τ 208 208 e - N γ γ event to measure γ γ Τ Τ → → → → β β - α β β α α -delayed event 214 Bi → α → → → 214 Po → → → → 210 Pb e + – e - pair event B rejection Shitov Yuriy, IC HEP seminar, 16.01.2008 17/54

  18. Background Unprecedented understanding, control and rejection of backgrounds Shitov Yuriy, IC HEP seminar, 16.01.2008 18/54

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend