neutrinoless double beta decay
play

Neutrinoless Double Beta Decay v Werner Rodejohann m v = m L - m D - PowerPoint PPT Presentation

Neutrinoless Double Beta Decay v Werner Rodejohann m v = m L - m D M -1 m D T R XVIII LNF Spring School MANITOP May 2016 Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology 1 Contents III) Neutrinoless double beta


  1. Neutrinoless Double Beta Decay v Werner Rodejohann m v = m L - m D M -1 m D T R XVIII LNF Spring School MANITOP May 2016 Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology 1

  2. Contents III) Neutrinoless double beta decay: non-standard interpretations III1) Basics III2) Left-right symmetry III3) SUSY III4) The inverse problem 2

  3. Interpretation of Experiments Master formula: Γ 0 ν = G x ( Q, Z ) |M x ( A, Z ) η x | 2 • G x ( Q, Z ) : phase space factor • M x ( A, Z ) : nuclear physics • η x : particle physics 3

  4. Interpretation of Experiments Master formula: Γ 0 ν = G x ( Q, Z ) |M x ( A, Z ) η x | 2 • G x ( Q, Z ) : phase space factor, typically Q 5 • M x ( A, Z ) : nuclear physics; factor 2-3 uncertainty • η x : particle physics; many possibilities 4

  5. Contents III) Neutrinoless double beta decay: non-standard interpretations III1) Basics III2) Left-right symmetry III3) SUSY III4) The inverse problem 5

  6. III1) Basics • Standard Interpretation: Neutrinoless Double Beta Decay is mediated by light and massive Majorana neutrinos (the ones which oscillate) and all other mechanisms potentially leading to 0 νββ give negligible or no contribution • Non-Standard Interpretations: There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism 6

  7. • Standard Interpretation: d L u L W U ei e − L ν i q ν i e − L U ei W u L d L • Non-Standard Interpretations: u L u L d L d L u L d L u L e − d c L d c W L W e − e − ˜ L e − ˜ u L d R L L e − W χ/ ˜ g L ν L u L χ 0 χ/ ˜ g N R √ h ee 2 g 2 v L χ/ ˜ g ∆ −− χ 0 u L N R χ/ ˜ g e − W R e − u L ˜ W R e − L e − L W L d c W L ˜ d R d c u L u L u L e − u L d L d L d L L 7

  8. Non-Standard Interpretations clear experimental signature: KATRIN (or cosmology) sees nothing but “ | m ee | > 0 . 5 eV” 0 νββ decoupled from cosmology limits on neutrino mass! 8

  9. Energy Scale: • standard amplitude for light Majorana neutrino exchange: � | m ee | | m ee | � GeV − 5 ≃ (2 . 7 TeV) − 5 A l ≃ G 2 ≃ 7 × 10 − 18 F q 2 0 . 5 eV • 9

  10. Energy Scale: • standard amplitude for light Majorana neutrino exchange: � | m ee | � | m ee | GeV − 5 ≃ (2 . 7 TeV) − 5 A l ≃ G 2 ≃ 7 × 10 − 18 F q 2 0 . 5 eV • if new heavy particles are exchanged: c A h ≃ M 5 10

  11. Energy Scale: • standard amplitude for light Majorana neutrino exchange: � | m ee | | m ee | � GeV − 5 ≃ (2 . 7 TeV) − 5 A l ≃ G 2 ≃ 7 × 10 − 18 F q 2 0 . 5 eV • if new heavy particles are exchanged: c A h ≃ M 5 ⇒ for 0 νββ holds: 1 eV = 1 TeV ⇒ Phenomenology in colliders, LFV 11

  12. Schechter-Valle theorem : observation of 0 νββ implies Majorana neutrinos W W d d u u ν e ν e e − e − G 2 (16 π 2 ) 4 MeV 5 ∼ 10 − 25 eV is 4 loop diagram: m BB F ∼ ν explicit calculation: Duerr, Lindner, Merle, 1105.0901 12

  13. mechanism physics parameter current limit test oscillations, � � � U2 light neutrino exchange 0.5 eV ei mi cosmology, � � � neutrino mass S2 � � LFV, 2 × 10 − 8 GeV − 1 � � ei heavy neutrino exchange � � Mi � � collider � � � � V2 flavor, � � 4 × 10 − 16 GeV − 5 ei � � heavy neutrino and RHC � � Mi M4 collider � � WR � � flavor, � � � � ( MR ) ee 10 − 15 GeV − 1 � � Higgs triplet and RHC collider � � m2 M4 � � e − distribution ∆R WR � � flavor, � � Uei ˜ � � Sei 1 . 4 × 10 − 10 GeV − 2 λ -mechanism with RHC � � collider, � � M2 � � e − distribution WR � � flavor, � � 6 × 10 − 9 � Uei ˜ η -mechanism with RHC tan ζ Sei collider, � � � e − distribution � λ ′ 2 � � � � 111 � collider, Λ5 7 × 10 − 18 GeV − 5 short-range / R SUSY flavor Λ SUSY = f ( m˜ g , m˜ uL , m˜ , m χ i ) dR � �   � � � sin 2 θ b λ ′ 131 λ ′ � 1 1 2 × 10 − 13 GeV − 2 − �   � 113 m2 m2 � �   flavor, � � ˜ ˜ long-range / b1 b2 R � � � � collider � λ ′ 131 λ ′ � � 1 × 10 − 14 GeV − 3 ∼ GF 113 � mb Λ3 q SUSY spectrum, 10 − 4 . . . 1 |� g χ �| or |� g χ �| 2 Majorons cosmology 13

  14. Some features • Majoranas and no RHC: rate  for q 2 ≫ m 2 m � q m    m  A ∝ q 2 − m 2 → 1 � m²  for q 2 ≪ m 2  � 1 � m²   m mass Note: maximum A corresponds to m ≃ � q � : limits on O ( m K ) Majorana neutrinos from K + → π − µ + e + • heavy scalar/vector boson: 1 1 A ∝ q 2 − m 2 → m 2 14

  15. Dib et al. , hep-ph/0006277 15

  16. Chiralities d L u L W U ei e −  L m i /q 2 ( m 2 i ≪ q 2 ) q + m i ν i m i A ∝ P L /  q P L ∝ ≃ q 2 − m 2 q 2 − m 2 ν i ( m 2 i ≫ q 2 ) 1 /m i e − i i  L U ei W u L d L u L d L W e − L ν L  ( m 2 i ≪ q 2 ) q + m i q 1 /q A ∝ P R / /  N R P L ∝ ≃ q 2 − m 2 q 2 − m 2 q/m 2 ( m 2 i ≫ q 2 ) N R i i  i e − R W R u R d R 16

  17. Heavy neutrinos d L u L W � ei e − L ν i q ν i e − L � ei W u L d L if heavier than 100 MeV: S 2 F � 1 m � ⇒ � 1 ∼ 10 − 8 GeV − 1 ei m � < A h = G 2 ≡ G 2 F M i dimensionless LNV parameter: η h = m p � 1 m � ≤ 1 . 7 × 10 − 8 17

  18. Faessler, Gonzalez, Kovalenko, Simkovic, 1408.6077 18

  19. An exact See-Saw Relation Full mass matrix:        m diag 0 m D 0  N S  U T with U = ν  = U M =   M diag m T M R 0 T V D R • N is the PMNS matrix: non-unitary R ) − 1 describes mixing of heavy neutrinos with SM leptons • S = m † D ( M ∗ upper left 0 in M gives exact see-saw relation U αi ( m ν ) i U iβ = 0 , or: ei M i | < | N 2 ei m i | = | S 2 ∼ 0 . 3 eV compare with S 2 ∼ 10 − 8 GeV − 1 and | S ei | 2 ≤ 0 . 0052 ei < M i 19

  20. exact see-saw relation gives stronger constraints! 0,01 0,0001 2 M_i |S ei | 1e-06 2 /M_i |S ei | 1e-08 1e-10 1e-12 2 1e-14 |S ei | 1e-16 1e-18 1e-20 1e-22 1e-24 1e-26 1e-28 1 1000 1e+06 1e+09 1e+12 1e+15 1e+18 M i [GeV] ⇒ cancellations required to make heavy neutrinos contribute significantly to 0 νββ 20

  21. TeV scale seesaw with sizable mixing m ν = m 2 D /M R ≃ v 2 /M R A it follows that M R ≃ 10 15 GeV and � ∆ m 2 with m ν ≃ � m ν /M R ≃ 10 − 13 S = m D /M R = then, heavy neutrino contribution to 0 νββ negligible: R ≃ 10 − 41 GeV − 1 S 2 /M R = m 2 D /M 3 m ν /M R ≃ 10 − 7 and still � can make M R TeV, but then mixing R ≃ 10 − 17 GeV − 1 m 2 D /M 3 21

  22. TeV scale seesaw with sizable mixing 1 ( here ω = e 2 iπ/ 3 ) not necessarily correct, m D and M R are matrices and cancellations can occur . . .   h 1 h 2 h 3   e.g. m D = v M R = M 0 ω h 1 ω h 2 ω h 3     ω 2 h 1 ω 2 h 2 ω 2 h 3 gives m ν = 0 , add (very) small corrections . . . m D = v , M R = TeV, mixing m D /M R large, 0 νββ contribution large 22

  23. TeV scale seesaw with sizable mixing can also make everything smaller:     fǫ 2 0 0 a b k M − 1   = M − 1   M D = m  , 0 gǫ 0 b c dǫ     R    eǫ 2 0 0 1 k dǫ M /GeV m /MeV ǫ a k b c d e f g 5.00 0.935 0.02 1.00 1.35 0.90 1.4576 0.7942 0.2898 0.0948 0.485 G 2 ≃ 10 − 4 GeV 2 q 2 | m ee | F � � A l � � ≃ 10 − 2 � = � � F � 1 q 2 A h G 2 m � � 23

  24. Higgs triplets (type II seesaw) d L u L e − L W √ 2 g 2 v L h ee ∆ −− W e − L u L d L h ee v L ( m ν ) ee | m ee | A ∆ ≃ G 2 < ∼ G 2 = G 2 F F F m 2 m 2 m 2 ∆ ∆ ∆ plays no role in 0 νββ 24

  25. Inverse Neutrinoless Double Beta Decay this is not 76 Se ++ + e − + e − → 76 Ge but rather e − + e − → W − + W − Rizzo; Heusch, Minkowski; Gluza, Zralek; Cuypers, Raidal; . . . e − e − e − W − W − W − L L L N N ∆ −− W − W − W − e − e − e − L L L (a) (b) (c) 25

  26. Inverse Neutrinoless Double Beta Decay - e - --- - W - , s = 16 TeV 2 e > W 1e+08 1e+06 10000 100 1 σ [fb] 0,01 0,0001 1e-06 2 = 1.0 |V ei | 1e-08 2 = 0.0052 |V ei | 1e-10 2 = 5.0 10 -8 (M i /GeV) |V ei | 1e-12 1e-14 1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08 M i [GeV] �� 2 d cos θ = G 2 dσ �� � t u ( m ν ) i U 2 F + ei 32 π t − ( m ν ) i u − ( m ν ) i 26

  27. Inverse Neutrinoless Double Beta Decay Extreme limits: • light neutrinos: � 2 σ ( e − e − → W − W − ) = G 2 � | m ee | 4 π | m ee | 2 ≤ 4 . 2 · 10 − 18 F fb 1 eV ⇒ way too small • heavy neutrinos: � √ s � 4 � � 2 S 2 ei /M i σ ( e − e − → W − W − ) = 2 . 6 · 10 − 3 fb 5 · 10 − 8 GeV − 1 TeV ⇒ too small • √ s → ∞ : σ ( e − e − → W − W − ) = G 2 � 2 �� F U 2 ei ( m ν ) i 4 π ⇒ amplitude grows with √ s ? Unitarity?? 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend