status of neutrinoless double beta decay experiments
play

Status of Neutrinoless Double Beta Decay Experiments Patrick - PowerPoint PPT Presentation

Invisibles Workshop, July 17, 2013 Status of Neutrinoless Double Beta Decay Experiments Patrick Decowski decowski@nikhef.nl Wednesday, July 17, 13 1 Double beta decay Isotopes (A,Z+1) (A,Z) even-even (A,Z+2) A second-order process


  1. Invisibles Workshop, July 17, 2013 Status of Neutrinoless Double Beta Decay Experiments Patrick Decowski decowski@nikhef.nl Wednesday, July 17, 13 1

  2. Double beta decay Isotopes (A,Z+1) (A,Z) ββ even-even (A,Z+2) A second-order process only detectable if first-order beta decay is energetically forbidden Patrick Decowski/Nikhef Wednesday, July 17, 13 2

  3. Neutrinoless Double Beta Decay e - e - ν i ν i M ν 6 = 0 U ei U ei | ∆ L | W - W - = 2 Nuclear Process > > (A, Z) (A, Z+2) • Extremely rare process [W.H. Furry (1939): T 1/2 > 10 16 yr] • Requires massive Majorana neutrino • Lepton Number Violation • Model dependent - Standard interpretation: light Majorana ν + SM interactions Patrick Decowski/Nikhef Wednesday, July 17, 13 3

  4. Neutrinoless Double Beta Decay e - e - ν i ν i M ν 6 = 0 U ei U ei | ∆ L | W - W - = 2 Nuclear Process > > (A, Z) (A, Z+2) • Extremely rare process [W.H. Furry (1939): T 1/2 > 10 16 yr] • Requires massive Majorana neutrino • Lepton Number Violation • Model dependent - Standard interpretation: light Majorana ν + SM interactions Patrick Decowski/Nikhef Wednesday, July 17, 13 3

  5. Candidate 0 ν 2 β Nuclei [Candidates with Q>2 MeV] Candidate Q[MeV] %Abund Candidates are even-even nuclei 48 Ca → 48 Ti 4.271 0.187 76 Ge → 76 Se 2.040 7.8 82 Se → 82 Kr 2.995 9.2 (A,Z+1) 96 Zr → 96 Mo 3.350 2.8 100 Mo → 100 Ru 3.034 9.6 (A,Z) 110 Pd → 110 Cd 2.013 11.8 ββ even-even (A,Z+2) 116 Cd → 116 Sn 2.802 7.5 124 Sn → 124 Te 2.228 5.64 130 Te → 130 Xe 2.530 34.5 136 Xe → 136 Ba 2.479 8.9 150 Nd → 150 Sm 3.367 5.6 Natural abundance of 0 ν 2 β candidates is low → enrichment necessary Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 4

  6. Detecting 0 ν 2 β Decay Without energy resolution 2 ν 2 β 0 ν 2 β � E e /Q • General approach: detect the two final-state electrons • Signature: Two simultaneous electrons with summed energy Q ββ , the Q-value for the ββ decay in the isotope of study Wednesday, July 17, 13 5

  7. Detecting 0 ν 2 β Decay With energy resolution 2 ν 2 β 0 ν 2 β � E e /Q • General approach: detect the two final-state electrons • Signature: Two simultaneous electrons with summed energy Q ββ , the Q-value for the ββ decay in the isotope of study Wednesday, July 17, 13 5

  8. 2 ν 2 β has been measured 1 / 2 ) − 1 = G 2 ν ( Q, Z ) | M 2 ν | 2 ( T 2 ν Phase Space Nuclear T 1/22 ν [yr] factor Matrix Element Isotope 48 Ca 4.2±1.0 x 10 19 • Conserves lepton number 76 Ge 1.5±0.1 x 10 21 82 Se 0.92±0.07 x 10 20 • Does not discriminate 96 Zr 2.0±0.3 x 10 19 between Dirac and 100 Mo 7.1±0.4 x 10 18 Majorana neutrinos 116 Cd 3.0±0.2 x 10 19 • Not sensitive to neutrino 128 Te 2.5±0.3 x 10 24 mass scale 130 Te 0.9±0.1 x 10 21 136 Xe 2.172±0.062 x 10 21 • Nevertheless: slow process! 150 Nd 7.8±0.8 x 10 18 238 U 2.0±0.6 x 10 21 Patrick Decowski/Nikhef Wednesday, July 17, 13 6

  9. What mass does 0 ν 2 β measure? 1 / 2 ) − 1 = G 0 ν ( Q, Z ) | M 0 ν | 2 � m ββ ⇥ 2 ( T 0 ν Phase Space factor: Nuclear Matrix Element: Calculable Hard to calculate Effective Majorana mass: � � 3 � � X U 2 h m ββ i = ei m i � � [coherent sum] � � � � i =1 Where U ei elements from the Lepton Mixing Matrix Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 7

  10. What mass does 0 ν 2 β measure? 1 / 2 ) − 1 = G 0 ν ( Q, Z ) | M 0 ν | 2 � m ββ ⇥ 2 ( T 0 ν Phase Space factor: Nuclear Matrix Element: Interesting physics Calculable Hard to calculate Effective Majorana mass: � � 3 � � X U 2 h m ββ i = ei m i � � [coherent sum] � � � � i =1 Where U ei elements from the Lepton Mixing Matrix Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 7

  11. Nuclear Matrix Elements 10 NSM QRPA (Tue) A. Dueck, W. Rodejohann and K.Zuber, Phys.Rev. D83 (2011) 113010 QRPA (Jy) IBM 8 IBM GCM PHFB Pseudo-SU(3) 6 M 0 ν M’ 0 ν 4 2 0 48 Ca 76 Ge 82 Se 96 Zr 100 Mo 110 Pd 116 Cd 124 Sn 130 Te 136 Xe 150 Nd Isotope Past 7-8 years: much better agreements between various models (e.g. NSM and QRPA) Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 8

  12. Nuclear Matrix Elements 10 NSM QRPA (Tue) A. Dueck, W. Rodejohann and K.Zuber, Phys.Rev. D83 (2011) 113010 QRPA (Jy) IBM 8 IBM GCM PHFB Pseudo-SU(3) 6 M 0 ν M’ 0 ν 4 2 0 48 Ca 76 Ge 82 Se 96 Zr 100 Mo 110 Pd 116 Cd 124 Sn 130 Te 136 Xe 150 Nd Isotope Past 7-8 years: much better agreements between various models (e.g. NSM and QRPA) Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 8

  13. Effective Majorana Mass S. Elliot, Mod. Phys. Lett. A 27, 1230009 (2012) Normal Inverted θ 12 = 33.58 0 δ θ 13 = 0 0 δ Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 9

  14. Effective Majorana Mass S. Elliot, Mod. Phys. Lett. A 27, 1230009 (2012) θ 13 non-zero Normal Inverted θ 12 = 33.58 0 θ 12 = 33.58 δ δ θ 13 = 0 0 θ 13 = 8.33 δ δ Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 9

  15. Effective Majorana Mass S. Elliot, Mod. Phys. Lett. A 27, 1230009 (2012) Planck, KATRIN Normal Inverted θ 12 = 33.58 0 θ 12 = 33.58 δ δ θ 13 = 0 0 θ 13 = 8.33 δ δ Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 9

  16. Effective Majorana Mass S. Elliot, Mod. Phys. Lett. A 27, 1230009 (2012) KKDC claim in 76 Ge Planck, KATRIN Normal Inverted θ 12 = 33.58 0 θ 12 = 33.58 δ δ θ 13 = 0 0 θ 13 = 8.33 δ δ Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 9

  17. Effective Majorana Mass S. Elliot, Mod. Phys. Lett. A 27, 1230009 (2012) KKDC claim in 76 Ge Next-generation of 0 ν 2 β expt: few 100kg Planck, KATRIN Normal Inverted θ 12 = 33.58 0 θ 12 = 33.58 δ δ θ 13 = 0 0 θ 13 = 8.33 δ δ Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 9

  18. Effective Majorana Mass S. Elliot, Mod. Phys. Lett. A 27, 1230009 (2012) KKDC claim in 76 Ge Next-generation of 0 ν 2 β expt: few 100kg Future 0 ν 2 β expt: ton-scale Planck, KATRIN Normal Inverted θ 12 = 33.58 0 θ 12 = 33.58 δ δ θ 13 = 0 0 θ 13 = 8.33 δ δ Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 9

  19. Osc Params in ⟨ m ββ ⟩ determination 1 1 ∆ m 2 A c 2 13 cos 2 θ 12 M. Lindner, A. Merle, W. Rodejohann, Phys.Rev. D73 (2006) 053005 m 0 ∆ m 2 A c 2 13 0.1 0.1 m 312 0 eV eV 0.01 0.01 1 − t 2 12 − 2 s 2 13 m 0 m ee m ee 1+ t 2 12 m 312 0 m 1 c 2 12 c 2 0.001 0.001 13 ∆ m 2 + m 2 1 s 2 12 c 2 − 13 ∆ m 2 s 2 12 c 2 13 ∆ m 2 1 s 2 A + m 2 − 13 ∆ m 2 A s 2 ± 13 0.0001 0.0001 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 m eV m eV [And, if sterile ν s exist, this diagram is no longer correct!] Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 10

  20. Osc Params in ⟨ m ββ ⟩ determination 1 1 ∆ m 2 A c 2 13 cos 2 θ 12 M. Lindner, A. Merle, W. Rodejohann, Phys.Rev. D73 (2006) 053005 m 0 ∆ m 2 A c 2 13 0.1 0.1 m 312 0 eV eV 0.01 0.01 1 − t 2 12 − 2 s 2 13 m 0 m ee m ee 1+ t 2 12 m 312 0 m 1 c 2 12 c 2 0.001 0.001 13 ∆ m 2 + m 2 1 s 2 12 c 2 − 13 ∆ m 2 s 2 12 c 2 13 ∆ m 2 1 s 2 A + m 2 − 13 ∆ m 2 A s 2 ± 13 0.0001 0.0001 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 m eV m eV [And, if sterile ν s exist, this diagram is no longer correct!] Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 10

  21. θ 12 Matters! m 3 = 0.001 eV 0.1 Adapted from A. Dueck, W. Rodejohann and K.Zuber, Phys.Rev. D83 (2011) 113010 σ IH, 3 IH, BF ⟨ m ββ ⟩ [eV] meff 0.01 0.28 0.3 0.32 0.34 0.36 0.38 s12 +3 σ sin 2 θ 12 Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 11

  22. θ 12 Matters! m 3 = 0.001 eV 0.1 Adapted from A. Dueck, W. Rodejohann and K.Zuber, Phys.Rev. D83 (2011) 113010 σ IH, 3 IH, BF ⟨ m ββ ⟩ [eV] meff 0.01 0.28 0.3 0.32 0.34 0.36 0.38 s12 -3 σ +3 σ sin 2 θ 12 Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 11

  23. θ 12 Matters! m 3 = 0.001 eV 0.1 Adapted from A. Dueck, W. Rodejohann and K.Zuber, Phys.Rev. D83 (2011) 113010 σ IH, 3 IH, BF ⟨ m ββ ⟩ [eV] meff Factor 2! 0.01 0.28 0.3 0.32 0.34 0.36 0.38 s12 -3 σ +3 σ sin 2 θ 12 Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 11

  24. θ 12 Matters! m 3 = 0.001 eV 0.1 Adapted from A. Dueck, W. Rodejohann and K.Zuber, Phys.Rev. D83 (2011) 113010 σ IH, 3 IH, BF ⟨ m ββ ⟩ [eV] meff Factor 2! 0.01 0.28 0.3 0.32 0.34 0.36 0.38 s12 -3 σ +3 σ sin 2 θ 12 Better measurement of θ 12 required: similar impact as NME uncertainty for a given isotope Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 11

  25. Experimental sensitivity 1 / 2 ∝ ✏ a No experimental T 0 ν AMt background: Detector Isotopic Mass Fraction Detector Running Efficiency Time � 1 / 2 ∝ � a Mt With experimental T 0 ν background: A b ∆ E Detector Atomic Resolution Mass Background Rate Patrick Decowski/University of Amsterdam Wednesday, July 17, 13 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend