the cuore neutrinoless double beta decay experiment
play

The CUORE Neutrinoless Double Beta Decay Experiment Tom Banks - PowerPoint PPT Presentation

The CUORE Neutrinoless Double Beta Decay Experiment Tom Banks (UC Berkeley, LBNL, & LNGS) DBD11 Workshop, Osaka, JP 15 Nov 2011 Neutrinoless double beta ( 0 )


  1. The CUORE Neutrinoless Double Beta Decay Experiment Tom ¡Banks ¡(UC ¡Berkeley, ¡LBNL, ¡& ¡LNGS) ¡ DBD11 ¡Workshop, ¡Osaka, ¡JP ¡ 15 ¡Nov ¡2011 ¡

  2. Neutrinoless ¡double ¡beta ¡( 0 νββ ) ¡decay ¡ × ► Extremely rare process ( T ½ > 10 24 y), if it occurs at all ► Requires massive, Majorana neutrinos ( ν = ν ) ► Violates lepton number = physics beyond SM 2

  3. Neutrinoless ¡double ¡beta ¡( 0 νββ ) ¡decay ¡ If 0 νββ is observed, it would 1. confirm neutrinos are Majorana particles (i.e., ); ν = ν 2. set constraints on the effective Majorana mass 〈 m ββ 〉 , providing information about the absolute ν mass scale; 3. possibly provide information about the mass hierarchy. 3

  4. Neutrinoless ¡double ¡beta ¡( 0 νββ ) ¡decay ¡ If 0 νββ is observed, it would 1. confirm neutrinos are Majorana particles (i.e., ); ν = ν 2. set constraints on the effective Majorana mass 〈 m ββ 〉 , providing information about the absolute ν mass scale; 3. possibly provide information about the mass hierarchy. 0 νββ d decay o y offers u uni nique p potent ntial t l to p probe u unkno nknown ne n neutrino no p parame meters 4

  5. DetecJng ¡ 0 νββ ¡decay ¡ ββ summed e − energy spectrum 2 νββ 0 νββ (not to scale) ► Ge Gene neral a l approach: h: Detect the two decay electrons ► Signa nature: Two simultaneous electrons with summed energy Q ββ , the Q-value for ββ in the isotope under study ► Energy resolution is critical to discriminating a tiny endpoint peak 5

  6. Established ¡experimental ¡approaches ¡ Use as calorimeter to watch for events Use tracking detectors to watch for 2 β ’ s of energy E=Q ββ emitted from foil with energy Σ E β = Q ββ Poor energy resolution Good energy resolution Small source mass Large source mass Low efficiency High efficiency Particle identification No particle identification 6

  7. Established ¡experimental ¡approaches ¡ CUO UORE 7

  8. Nascent ¡experimental ¡approaches ¡ Xe-filled d TPC PCs s Loade ded d sci scinti tillato tor KamLAND- Zen EXO Particle identification Repurpose existing experiments Large source mass Technically complex Poor energy resolution No particle identification 8

  9. Cuoricino/CUORE ¡program ¡ Cuoricino no CUO UORE-O -O CUO UORE 2012—2014 2003—2008 2013—2018 11 kg 130 Te 11 kg 130 Te 206 kg 130 Te ► CUO UORE: C : Cryogenic Undergound Observatory for Rare Events ► All cryogenic bolometer experiments searching for 0 νββ decay in 130 Te 9

  10. 130 Te ¡as ¡ 0 νββ ¡candidate ¡ ► High natural abundance (~ 34%), so enrichment isn’t necessary ► Good Q-value @ 2528 keV: (1) above natural γ energies, (2) large phase space 10

  11. Cryogenic ¡bolometers ¡ ► Crystals of TeO 2 are cooled to ~ 10 mK inside a dilution-refrigerator cryostat ► Cold crystals have such small heat 5 cm capacities that single interactions produce measurable rises in temperature ► Temperature pulses are measured by thermistors glued to the crystals ► A pulse’s amplitude is proportional to the energy deposited in the crystal 11

  12. Cuoricino/CUORE ¡method ¡ The energy spectrum of detected pulses is compiled... 12

  13. Cuoricino/CUORE ¡method ¡ The energy spectrum of detected ... and the signature of 0 νββ in 130 Te pulses is compiled... would be a small peak at 2528 keV. 13

  14. Experiment ¡locaJon: ¡LNGS, ¡Italy ¡ LNGS GS Gr Gran S n Sasso ma massif 14

  15. LNGS ¡underground ¡facility ¡ ► Gran Sasso National Lab (LNGS), managed by INFN, Italy’s nuclear physics agency ► Branches off highway tunnel through mountain ► 1.4-km avg. rock overburden = 3100 m.w.e. flat overburden B A ➙ factor 10 6 reduction in muon C flux to ~ 3 × 10 —8 µ /(s cm 2 ) A2 A24 ► 3 experimental halls (A, B, C) NE NE ► Hosts 15+ experiments 15

  16. Cuoricino/CUORE ¡faciliJes ¡@ ¡LNGS ¡ CUORE hut Cuoricino/ CUORE-0 hut 16

  17. Cuoricino ¡experiment ¡ ► CUORE predecessor ► Operated March 2003 — May 2008 ► 62 TeO 2 crystal bolometers: ► 44 “large” crystals (5x5x5 cm 3 , 790 g) ► 18 “small” crystals: (3x3x6 cm 3 , 330 g) ► 58 crystals made of natural 27% 130 Te ► 2 small crystals enriched to 75% in 130 Te ► 2 small crystals enriched to 82% in 128 Te ► 40.7 kg TeO 2 ➙ 11.3 .3 k kg 13 130 Te Te 17

  18. Cuoricino ¡energy ¡spectrum ¡ 238 U and 232 Th alpha peaks due to Photopeaks, scatters, low-energy gammas crystal & copper surface contamination nts/keV/kg/y y count Ene nergy ( y (keV) 18

  19. Cuoricino ¡energy ¡spectrum ¡ 238 U and 232 Th alpha peaks due to Photopeaks, scatters, low-energy gammas crystal & copper surface contamination nts/keV/kg/y y count Ene nergy ( y (keV) 19

  20. Cuoricino ¡backgrounds ¡ nts/keV/kg/y y 208 Tl 214 Bi count 60 Co − data spectrum − 232 Th calibration spectrum (normalized) ► There are three main sources of background in the region around the Q v valu lue:  (~35%) Compton events from 208 Tl gammas, from 232 Th contamination in the cryostat (i.e., inside the lead shield)  (~55%) Degraded alphas from 238 U and 232 Th on copper surfaces  (~10%) Degraded alphas from 238 U and 232 Th on crystal surfaces ► The 2506 keV 60 Co peak is likely due to cosmic-ray activation of the copper 20

  21. Cuoricino ¡coincidence ¡veto ¡ 214 Bi 208 Tl − all events − single-hit events 60 Co 130 Te Q ββ ► 0 νββ decay should produce a sing ngle le-s -site e event nt 85% of the time ► Excluding mu mult lti-s -site e event nts reduces background by 15% in region of interest while retaining > 99% of signal 21

  22. Cuoricino ¡results ¡(2010) ¡ 19.75 kg-yr 130 Te exposure (2003—2008) Q=2527.5 keV Background: 0.169 ± 0.006 counts/keV/kg/y 0 νββ Lower limit, half-life: ( 130 Te) ≥ 2.8 × 10 24 y (90% C.L.) T 1 2 Upper limit, Majorana ν mass: 〈 m ββ 〉 < 300 – 710 meV 22 E. Andreotti et al. (CUORICINO Collaboration), Astropart. Phys. 34: 822–831 (2011) [arXiv:nucl-ex/1012.3266].

  23. CUO UORE 23

  24. From ¡Cuoricino ¡to ¡CUORE ¡ Isotope mass fraction Detector mass Detector efficiency Exposure time 0 νββ ( n σ ) ∝ ε ⋅ a M ⋅ t Τ 1 2 n σ B ⋅ δ E Energy resolution Confidence level Background ► “Factor of Merit” formula assumes a Gaussian background ► Illustrates relationship between half-life sensitivity and detector parameters ► Sensitivity is the maximum decay signal that could be hidden by a background fluctuation at specified confidence level

  25. From ¡Cuoricino ¡to ¡CUORE ¡ Isotope mass fraction Detector mass ( × 19) Detector efficiency Exposure time ( × 2) 0 νββ ( n σ ) ∝ ε ⋅ a M ⋅ t Τ 1 2 n σ B ⋅ δ E Energy resolution (÷1.6) Confidence level Background (÷18) ► “Factor of Merit” formula assumes a Gaussian background ► Illustrates relationship between half-life sensitivity and detector parameters ► Sensitivity is the maximum decay signal that could be hidden by a background fluctuation at specified confidence level

  26. CUORE ¡ Pulse tubes (5) Dilution refrigerator Outer lead shield Copper thermal shields (6) (300, 40, 4, 0.6, 0.06, 0.004 K) Roman lead shield 988 TeO 2 crystal detectors (19 towers of 52 crystals) 26

  27. Cryostat ¡improvements ¡ Cuoricino no CUO UORE ► 20-year-old Oxford dilution refrigerator ► New, custom dilution refrigerator ► Periodic refilling of cryogens (LHe) causes ► Cryogen-free (during operation) dead time and thermal fluctuations ➙ better duty cycle ► Poor mechanical decoupling from ► Detector suspension independent detectors generates vibrational noise of refrigerator apparatus ► Minimum lead thickess ≈ 22 cm ► Minimum lead thickess ≈ 36 cm ► 232 Th contamination generates irreducible ► Stringent radiopurity controls on background in ROI of ~ 0.05 c/keV/kg/y materials and assembly 27

  28. Detector ¡improvements ¡ ► Cleaner crystals ► Cleaner copper, and less per kg TeO 2 ► Cleaner assembly environment ► Tower frames less vibration-sensitive ► Better self-shielding & anticoincidence coverage Cuoricino no CUO UORE-0 -0 CUO UORE 130 Te mass (kg) 11 11 206 Background (c/keV/kg/y) @ 2528 keV 0.17 0.05 0.01 E resolution (keV) FWHM @ 2615 keV 7 5–6 5 〈 m ββ 〉 (meV) @ 90% C.L. 300–710 200–500 40–90 28

  29. Engineering ¡ Challenge is in scaling up the bolometric apparatus: ► Mass production of 988 ultra-radiopure crystal detectors ► Instrumentation of 988 detectors in close-packed, 13-tower array ► Complex, nested cryostat ► Multiple interconnected systems sharing tight space under very cold conditions ► Long cooldown time (~ 1 month) necessitates careful planning and robust systems 29

  30. Cryostat ¡ ► 4 companies to pour, work, and form low-rad copper into 6 vessels + flanges ► Outer 3 vessels (300, 40, 4 K) are electron-beam welded ► Delivery scheduled for February 2012 ► More delicate inner 3 vessels (600, 50, 10 mK) will be manufactured next year 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend