production of the d s meson in proton proton collisions
play

Production of the D s meson in proton-proton collisions at 13 TeV - PowerPoint PPT Presentation

Rencontres QGP France 2019 Production of the D s meson in proton-proton collisions at 13 TeV as a function of multiplicity Arthur Gal University of Strasbourg Institut Pluridisciplinaire Hubert Curien Outline Part I : Physics motivations


  1. Rencontres QGP France 2019 Production of the D s± meson in proton-proton collisions at 13 TeV as a function of multiplicity Arthur Gal University of Strasbourg Institut Pluridisciplinaire Hubert Curien

  2. Outline Part I : Physics motivations → Small systems versus heavy ion → What are the interests in proton-proton at high multiplicity ? → Heavy fm avour production as a function of multiplicity in proton-proton collisions Part II : Presentation of my current analysis work → ALICE detector → Extraction of the D s production yield → Production yield as a function of the event multiplicity in pp collisions

  3. Three main collision systems : pp, p-Pb and Pb-Pb → small systems : pp, p-Pb At LHC, three main collision systems available → heavy ion : Pb-Pb Proton-proton Pb-Pb 0 Pre- equilibrium 0.5 - 1 → quasi-perfect fm uid QGP phase → hydrodynamic description → kinematically and chemically 7 equilibrated → interplay between hard and soft QCD processes → statistical physics principles - hard scattering - multi parton interaction 10 - fragmentation of beam remnants chemical freeze-out - initial and fj nal state radiation kinetic → relative contributions of these processes freeze-out 20 spatial distributions of hard partons ( x ≥ 10 -3 ) Hadronic gaz fm/ c 3 (10 -24 s)

  4. <latexit sha1_base64="YPk8F2Pi3q3ysyEHF0vKbajTjA=">ACXicbVFNaxsxENVumy83H2576KEXUVNIKZhdJ5CSU0h76KmkUDsBr1lmtVpbRKsV0mzACP3J3pL/0plewtp0kFCb96b0cdToaWwmCS/ovjZ863tnd293ov9g8Oj/stXE9u0hvExa2RjbgqwXArFxyhQ8htONSF5NfF7eVfn3HjRWN+oFLzWc1zJWoBAMVN7HrDLAXOrdt9yhEXPvN0wZcg3CeO/K7AuXCDTC+Fpdv53gNQLeJCf0/RjZts6d8rT0SQsm0bPGnvc4dUeH/L+IBkm6BPQdqBAeniKu/zMqGtTVXyCRYO0TjTMHBgWT3Pey1nIN7BbmfBqgprbmVu74+n7wJS0akyYCumafdjhoLZ2WRehsgZc2MfaivyfNm2x+jRzQukWuWKbg6pWUmzoympaCsMZymUAwIwId6VsAcFcDB/SCyakj5/8FExGw/RkOPp+Ori47OzYJW/JO3JMUnJGLshXckXGhJH7iER7US/6HW/F+/HhpjSOup7X5J+I3/wBGAyzvg=</latexit> Proton-proton collision system Why studying proton-proton ? •Historically pp is a reference system → test of the QCD → no QGP in pp ⇒ reference for p-A and AA systems •Recently typical e fg ect of heavy-ion phenomenology has been observed in pp high multiplicity → two-particle angular correlations ⇒ ridge observed ( ∆ 휙 ≃ 0, | ∆ 휂 | > 2 ) 10.1007/JHEP09(2010)091 10.1016/j.physletb.2016.12.009 → azimuthal anisotropy harmonics ⇒ “elliptic fm ow” harmonic v 2 1 dN pair X Expansion in Fourier series : 1 + 2 V n ∆ cos ( n ∆ φ ) α N trig d ∆ φ n 4

  5. Proton-proton collision system → strangeness enhancement ⇒ originally proposed as a QGP signature ) − π + p+ p ( × 6) + π Ratio of yields to ( 0 2K S − 1 10 Λ + Λ 2 φ ( × 2) + − Ξ + Ξ ( × 3) − 2 + 10 − Ω + Ω ( × 12) ALICE Preliminary ALICE pp, s = 13 TeV pp, s = 7 TeV Pb-Pb, s = 5.02 TeV NN p-Pb, s = 5.02 TeV Xe-Xe, s = 5.44 TeV NN NN − 3 10 2 3 4 10 10 10 10 10.1038/nphys4111 ALI-PUB-106886 〈 d N /d η 〉 ch | η |< 0.5 ALI − PREL − 159147 훺 (s s s) m ≃ 1.7 GeV/ c 2 → continuity between 훯 (d s s) m ≃ 1.3 GeV/ c 2 strangeness pp, pPb and PbPb content 훬 (u d s) m ≃ 1.1 GeV/ c 2 K 0s (d s) m ≃ 0.5 GeV/ c 2 → enhancement increases with strangeness content rather than with mass or baryon number → similar to the patterns seen in p–Pb and Pb–Pb collisions at the LHC → behaviour not reproduced by any of the MC models commonly used 5

  6. Heavy fm avour quarks to heavy fm avour hadrons H eavy fm avour quarks : m c ≃ 1.3 GeV/ c 2 , m b ≃ 4.2 GeV/ c 2 >> Λ QCD ≃ 0.2 GeV •Produced in hard scattering processes (high Q 2 ) → possible perturbative QCD calculation of the production cross section down to low p T → di fg erent heavy quarks ⇒ di fg erent Q 2 probed •Fragmentation process in “PYTHIA”-like Monte Carlo models → non perturbative process → fragmentation model (Lund string model) → colour rope : string close in space can interact and form ropes → colour reconnection : colour connections between partons in the fj nal state coming from di fg erent hard scattering processes ⇒ hadron production is a fg ected by the whole system evolution H eavy fm avour hadrons open heavy fm avours : c → D 0 , D ± , D s ± , D * ± , Λ c ± … b → B 0 , B ± , B s ± … hidden heavy fm avours : c → J/ Ψ , Ψ (2S) … b → γ (1S, 2S, 3S) … 6

  7. Heavy fm avour as a function of multiplicity in proton-proton collision ALICE paper pp 7 TeV (10.1007/JHEP09(2015)148) 25 25 〉 〉 〉 T T T 20 20 ALICE, pp s = 7 TeV ALICE, pp s = 7 TeV ALICE p p p Percolation, p >0 d d d T 0 + + 0 + + pp s = 7 TeV Average D , D , D* meson | y |<0.5, 2< p <4 GeV/ c Average D , D , D* meson | y |<0.5, 2< p <4 GeV/ c 18 18 EPOS 3.099 y y y T T - - D meson /d + /d + Prompt J/ ψ → e e , | y |<0.9, p >0 Non-prompt J/ ψ → e e , | y |<0.9, p >0 /d 20 20 EPOS 3.099 + Hydro T T 16 16 N N N B feed-down and normalization PYTHIA 8.157 2 2 uncertainties not shown 2 d d 14 14 d 〈 〈 〈 ) / ) / 15 15 ) / 12 12 T T T p p 10 10 p d d d y y 10 10 y 8 8 /d /d /d N N 6 6 N 2 2 (d (d 2 (d 4 4 5 5 2 2 1 < p < 2 GeV/ c 2 < p < 4 GeV/ c +6%/-3% normalization unc. not shown +6%/-3% normalization unc. not shown T T ± 6% unc. on (d N /d η ) / 〈 d N /d η 〉 not shown ± 6% unc. on (d N /d η ) / 〈 d N /d η 〉 not shown 〉 B feed-down unc. B feed-down unc. T 20 20 0.4 0.4 B fraction hypothesis: × 1/2 (2) at low (high) multiplicity B fraction hypothesis: × 1/2 (2) at low (high) multiplicity p d 0.2 0.2 18 18 y 0 0 /d 16 16 0.2 0.2 − − N 14 14 − 0.4 − 0.4 2 d 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 〈 12 12 ) / (d N /d η ) / 〈 d N /d η 〉 (d N /d η ) / 〈 d N /d η 〉 ch ch ch ch ALI − PUB − 95849 ALI − PUB − 92971 10 10 T p d 8 8 y /d 6 6 N 4 4 2 → open vs hidden heavy fm avour production (d 2 2 4 < p < 8 GeV/ c 8 < p < 12 GeV/ c T T ⇒ the behaviour is most likely related to cc and bb production 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 (d N /d η ) / 〈 d N /d η 〉 (d N /d η ) / 〈 d N /d η 〉 ⇒ not signi fj cantly in fm uenced by hadronisation ch ch ch ch ALI − PUB − 92985 → heavy- fm avour relative yield enhancement qualitatively described by : - PYTHIA 8.157 calculations including the MPI contributions to particle production - percolation model (exchange of colour sources between the projectiles) - EPOS 3 event generator 7

  8. D s meson Motivation D s meson measurement → D s composed by a charm and a strange quark ⇒ study strangeness enhancement in conjunction with charm production → reach the overlap between pp and pPb, PbPb on the heavy fm avour side + + + / D / D / D 6 < < 8 GeV/ 2 < p < 4 GeV/ c 4 < p < 6 GeV/ c p c T T T + s + s + s D D D 1 1 1 0.5 0.5 0.5 → within uncertainties, di ffj cult to argue for a + yield ratios modi fj cation of the D s /D + 3 + 3 3 2 2 2 10 10 10 in pp and p–Pb collisions / D 10 10 10 / D 10 10 10 8 < p < 12 GeV/ c 12 < p < 16 GeV/ c 〈 d N /d η 〉 〈 d N /d η 〉 〈 d N /d η 〉 T T + ch + | η |<0.5 ch | η |<0.5 ch | η |<0.5 s s D D 1 1 ALICE Preliminary pp Minimum Bias, s = 5.02 TeV p − Pb, s = 5.02 TeV NN SPD multiplicity classes 0.5 0.5 Pb − Pb, s = 5.02 TeV NN arXiv:1804.09083 V0 multiplicity classes 4.3% BR uncertainty not shown ± 3 3 2 2 10 10 10 10 10 10 〈 d N /d η 〉 〈 d N /d η 〉 ALI − PREL − 149859 ch | η |<0.5 ch | η |<0.5 Goal of my current work ALICE paper pPb 5.02 TeV (arXiv:1906.03425) ⇒ complete the picture ⇒ D s analysis as a function of multiplicity in pp ⇒ using the high statistics available in pp at √ s = 13 TeV 8

  9. Outline Part I : Physics motivations → Small systems versus heavy ion → What is are the interests in proton-proton at high multiplicity ? → Heavy fm avour production as a function of multiplicity in proton-proton collisions Part II : Presentation of my current analysis work → ALICE detector → Extraction of the D s production yield → Production yield as a function of the event multiplicity in pp collisions

  10. ALICE detector Inner Tracking System 26 x 16m Time Projection 10 000 tons Chamber Time Of Flight V0 (trigger, centrality, multiplicity) Key roles •Particle trajectories reconstruction 0.1 < p T < 50 - 80 GeV/ c Particularities •Momentum measurement •“low” material budget (12-13% X 0 , ITS+TPC) •Vertex reconstruction •“low” B fj eld ( ∼ 0.5 T) •Particle identi fj cation •identi fj ed particles down to p T ∼ 100 MeV/c 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend