roy steiner equations for
play

RoySteiner equations for Martin Hoferichter 1 , 2 Daniel R. - PowerPoint PPT Presentation

RoySteiner equations for Martin Hoferichter 1 , 2 Daniel R. Phillips 2 Carlos Schat 2 , 3 1 Helmholtz-Institut f ur Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universit at Bonn 2 Institute of


  1. Roy–Steiner equations for γγ → ππ Martin Hoferichter 1 , 2 Daniel R. Phillips 2 Carlos Schat 2 , 3 1 Helmholtz-Institut f¨ ur Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universit¨ at Bonn 2 Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University 3 CONICET - Departamento de F´ ısica, FCEyN, Universidad de Buenos Aires Munich, June 14, 2011 Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 1

  2. Outline Roy equations for ππ scattering 1 Roy–Steiner equations for γγ → ππ 2 es solution for γγ → ππ Muskhelishvili–Omn` 3 Results 4 Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 2

  3. Motivation Roy equations = coupled system of partial wave dispersion relations + crossing symmetry + unitarity Roy equations respect analyticity , unitarity , and crossing symmetry Partial wave dispersion relations in combination with unitarity (and chiral symmetry) allow for high-precision studies of low-energy processes ππ scattering: Roy (1971), Ananthanarayan et al. (2001), Garc´ ıa-Mart´ ın et al. (2011) π K scattering: B¨ uttiker et al. (2004) Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 3

  4. Motivation Roy equations = coupled system of partial wave dispersion relations + crossing symmetry + unitarity Roy equations respect analyticity , unitarity , and crossing symmetry Partial wave dispersion relations in combination with unitarity (and chiral symmetry) allow for high-precision studies of low-energy processes ππ scattering: Roy (1971), Ananthanarayan et al. (2001), Garc´ ıa-Mart´ ın et al. (2011) π K scattering: B¨ uttiker et al. (2004) Application: determination of the pole position of the σ -meson ππ Roy equations + Chiral Perturbation Theory (ChPT) Caprini et al. (2006) M σ = 441 + 16 Γ σ = 544 + 18 − 8 MeV − 25 MeV γγ → ππ provides alternative access to the σ ⇒ two-photon width Γ σγγ Aim: constrain Γ σγγ at a similar level of rigor as M σ and Γ σ Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 3

  5. Roy equations for ππ scattering Start from twice-subtracted dispersion relation at fixed Mandelstam t ∞ s 2 u 2 T ( s , t ) = c ( t )+ 1 � � � d s ′ Im T ( s ′ , t ) s ′ 2 ( s ′ − s ) + π s ′ 2 ( s ′ − u ) 4 M 2 π Determine subtraction functions c ( t ) from crossing symmetry Partial wave projection (angular momentum J and isospin I ) ⇒ coupled system of integral equations for partial waves t I J ( s ) ∞ ∞ 2 t I J ( s ) = k I ∑ ∑ � d s ′ K II ′ JJ ′ ( s , s ′ ) Im t I ′ J ( s )+ J ′ ( s ′ ) I ′ = 0 J ′ = 0 4 M 2 π Kernel functions K II ′ JJ ′ known analytically δ JJ ′ δ ll ′ K II ′ K II ′ JJ ′ ( s , s ′ ) = JJ ′ ( s , s ′ ) s ′ − s − i ε + ¯ Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 4

  6. Roy equations for ππ scattering ∞ ∞ 2 � t I J ( s ) = k I ∑ ∑ d s ′ K II ′ JJ ′ ( s , s ′ ) Im t I ′ J ( s )+ J ′ ( s ′ ) I ′ = 0 J ′ = 0 4 M 2 π Free parameters: ππ scattering lengths in k I J ( s ) (“subtraction constants”) ⇒ Matching to ChPT Colangelo et al. (2001) Use elastic unitarity to obtain a coupled integral equation for the phase shifts Im t I J ( s ) = σ ( s ) | t I J ( s ) | 2 t I t I J J J ( s ) = e 2 i δ I J ( s ) − 1 t I � 1 − 4 M 2 σ ( s ) = π 2 i σ ( s ) s Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 5

  7. Roy–Steiner equations for γγ → ππ q 1 , λ 1 q 2 , λ 2 Kinematics: s = ( p 1 + q 1 ) 2 , t = ( q 1 − q 2 ) 2 , u = ( q 1 − p 2 ) 2 Amplitude for γπ → γπ : F λ 1 λ 2 ( s , t ) = ε µ ( q 1 , λ 1 ) ε ∗ ν ( q 2 , λ 2 ) W µν ( s , t ) ∆ µ = p 1 µ + p 2 µ p 1 p 2 � t W µν ( s , t ) = A ( s , t ) 2 g µν + q 2 µ q 1 ν � + B ( s , t ) � 2 t ∆ µ ∆ ν − ( s − u ) 2 g µν + 2 ( s − u )(∆ µ q 1 ν +∆ ν q 2 µ ) � Use dispersion relations for A ( s , t ) and B ( s , t ) ⇒ constraints from gauge invariance automatically fulfilled Crossing symmetry couples γγ → ππ and γπ → γπ ( s − a )( u − a ) = ( s ′ − a )( u ′ − a ) ⇒ use hyperbolic dispersion relations Hite, Steiner (1973) ∞ d t ′ Im A ( t ′ , z ′ t ) 1 1 π − a + 1 1 � A ( s , t ) = π − s + π − u − M 2 M 2 M 2 π t ′ − t 4 M 2 π ∞ + 1 � 1 1 1 � � d s ′ Im A ( s ′ , t ′ ) s ′ − s + s ′ − u − π s ′ − a M 2 π Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 6

  8. Roy–Steiner equations for γγ → ππ Coupled system for γγ → ππ partial waves h I J , ± ( t ) and γπ → γπ partial waves f I J , ± ( s ) (photon helicities ± ), e.g. ∞ ∞ ∞ J ( t ) + 1 J ′ , + ( s ′ )+ 1 � � h I ∑ JJ ′ ( t , s ′ ) Im f I d t ′ ∑ JJ ′ ( t , t ′ ) Im h I J , − ( t ) = ˜ N − d s ′ G − + ˜ K −− ˜ J ′ , − ( t ′ ) π π J ′ = 1 J ′ M 2 4 M 2 π π Subtraction constants ⇔ pion polarizabilities π , t ) = α 1 ± β 1 + t ± 2 α F + ± ( s = M 2 12 ( α 2 ± β 2 )+ O ( t 2 ) ˆ M π t Transition between isospin and particle basis       h π ± h 0 1 1 √ √ J , ± J , ± 3 6  = etc.         �    h π 0 h 2 1 2 √ − J , ± J , ± 3 3 Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 7

  9. Roy–Steiner equations for γγ → ππ ∞ ∞ ∞ J ( t ) + 1 J ′ , + ( s ′ )+ 1 h I � ∑ JJ ′ ( t , s ′ ) Im f I � d t ′ ∑ JJ ′ ( t , t ′ ) Im h I J , − ( t ) = ˜ N − d s ′ ˜ G − + K −− ˜ J ′ , − ( t ′ ) π π J ′ = 1 J ′ M 2 4 M 2 π π Unitarity relation is linear in h I J , ± ( t ) Im h I J , ± ( t ) = σ ( t ) h I J , ± ( t ) t I J ( t ) ∗ t I h I J, ± J ⇒ less restrictive than for ππ scattering “Watson’s theorem” : phase of h I J , ± ( t ) equals δ I J ( t ) Watson (1954) es problem for h I J , ± ( t ) Muskhelishvili (1953), Omn` ⇒ Muskhelishvili–Omn` es (1958) Equations are valid up to t max = ( 1 GeV ) 2 (assuming Mandelstam analyticity) Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 8

  10. es solution for γγ → ππ Muskhelishvili–Omn` Truncate the system at J = 2 Input for Im f I J , ± ( s ) : approximate multi-pion states by sum of resonances Garc´ ıa-Mart´ ın, Moussallam (2010) Assume h I J , ± ( t ) to be known above t m = ( 0 . 98 GeV ) 2 ⇒ Muskhelishvili–Omn` es problem with finite matching point B¨ uttiker et al. (2004) es functions, e.g. for h I 0 , + ( t ) (one subtraction) Solution in terms of Omn` 0 , + ( t )+ M π h I 0 , + ( t ) = ∆ I 2 α ( α 1 − β 1 ) I t Ω I 0 ( t ) t m ∞ d t ′ sin δ I 0 ( t ′ )∆ I Im h I + t 2 Ω I 0 , + ( t ′ ) 0 , + ( t ′ ) 0 ( t ) � � � � d t ′ 0 ( t ′ ) | + t ′ 2 ( t ′ − t ) | Ω I t ′ 2 ( t ′ − t ) | Ω I π 0 ( t ′ ) | t m 4 M 2 π with the Omn` es function t m d t ′ δ I � t J ( t ′ ) � � Ω I J ( t ) = exp t ′ ( t ′ − t ) π 4 M 2 π Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 9

  11. es solution for γγ → ππ Muskhelishvili–Omn` t m ∞ d t ′ sin δ I 0 ( t ′ )∆ I Im h I 0 ( t )+ t 2 Ω I 0 , + ( t ′ ) 0 , + ( t ′ ) 0 , + ( t )+ M π 0 ( t ) � � � � h I 0 , + ( t ) = ∆ I 2 α ( α 1 − β 1 ) I t Ω I d t ′ 0 ( t ′ ) | + t ′ 2 ( t ′ − t ) | Ω I t ′ 2 ( t ′ − t ) | Ω I π 0 ( t ′ ) | t m 4 M 2 π ∆ I 0 , + ( t ) describes left-hand cut ∞ 0 , + ( t ) + 1 � ∆ I 0 , + ( t ) = N I d t ′ � 02 ( t , t ′ ) Im h I 02 ( t , t ′ ) Im h I � K ++ ˜ 2 , + ( t ′ ) + ˜ K + − 2 , − ( t ′ ) π 4 M 2 π ∞ d s ′ ∑ + 1 � � G ++ ˜ 0 J ′ ( t , s ′ ) Im f I J ′ , + ( s ′ )+ ˜ G + − 0 J ′ ( t , s ′ ) Im f I J ′ , − ( s ′ ) � π J ′ = 1 , 2 M 2 π Input Above t m use Breit–Wigner description of f 2 ( 1270 ) ππ phases: Caprini et al. (in preparation), Garc´ ıa-Mart´ ın et al. (2011) Roy–Steiner equations for γγ → ππ M. Hoferichter (HISKP & BCTP , Uni Bonn) Munich, June 14, 2011 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend