pole masses of neutrinos in the grimus neufeld model
play

Pole masses of Neutrinos in the GrimusNeufeld model Vytautas D ud - PowerPoint PPT Presentation

Pole masses of Neutrinos in the GrimusNeufeld model Vytautas D ud enas Vilniaus Universitetas In collaboration with Thomas Gajdosik, Darius Juriukonis September 6, 2019 1 / 16 Outline Model for masses 1 Pole mass calculation 2


  1. Pole masses of Neutrinos in the Grimus–Neufeld model Vytautas D¯ ud˙ enas Vilniaus Universitetas In collaboration with Thomas Gajdosik, Darius Jurčiukonis September 6, 2019 1 / 16

  2. Outline Model for masses 1 Pole mass calculation 2 Comparing two approximations 3 Conclusions 4 2 / 16

  3. Motivation BSM physics already: neutrinos mix and have mass... but what is the exact mechanism? Unknown BSM physics: More scalars? 3 / 16

  4. Motivation BSM physics already: neutrinos mix and have mass... but what is the exact mechanism? Unknown BSM physics: More scalars? Being general but minimal: 2HDM + 1 Seesaw neutrino → Grimus–Neufeld model [GN ’89]. Incorporates masses and mixings at one loop. 3 / 16

  5. Yukawa couplings Singlet Weyl spinor neutrino N : L M = − 1 2 M ( NN + h . c . ) 1 Take 2HDM in the Higgs basis ( � H 1 � = √ 2 v , � H 2 � = 0) , √ 2 m i Leptons are in the Flavour basis ( Y 1 ℓ i = , i = e , µ , τ , ) v Neutrino Yukawa couplings in GN Y 1 ν and Y 2 ν are 2 general complex 3-vectors: ν i ℓ i ˜ ν i ℓ i ˜ L Yuk = − Y 1 H 1 N − Y 2 H 2 N + H . c ., i = e , µ , τ ; ˜ H I ≡ ε ij H Ij , ε 12 = − ε 12 = 1 , By a unitary transformation U we can pick a basis: 0 , d , d ′ � Y 1 ν U = ( 0 , 0 , y ) , Y 2 � ν U = 4 / 16

  6. Neutrino mass generation Y 1 ν U = ( 0 , 0 , y ) , Y 2 0 , d , d ′ � � ν U = . � H 1 � � H 1 � . N ν 3 ν 3 y y H 2 H 2 . . . . ν 2 N ν 2 ν 3 N ν 3 d d d ′ d ′ Figure: Seesaw and radiative mass generation in Weyl spinor notation. The arrow shows chirality propagation. Approximate mass eigenstate basis ⇒ U ≈ V PMNS 5 / 16

  7. Neutrino mass generation Y 1 ν V PMNS = ( 0 , 0 , y ) , Y 2 0 , d , d ′ � � ν V PMNS = . � H 1 � � H 1 � . N ν 3 ν 3 y y H 2 H 2 . . . . N N ν 2 ν 2 ν 3 ν 3 d d d ′ d ′ Task : take PMNS, ∆ m 2 12 , and ∆ m 2 13 from experiment and relate them to d , d ′ , y at one loop. Also relates the scalar sector to Yukawa. Implement in FlexibleSUSY (FS) spectrum generator. 6 / 16

  8. Pole masses Effective two point functions for Majorana neutrinos: . . ν j ν i ν j ν i i Γ ij = iσp Σ ij = We get poles: det ( µ 2 − ΓΣ − 1 ΓΣ − 1 ) = 0 ⇒ det ( µ ± ΓΣ − 1 ) = 0 We solve it perturbatively: ε n µ ( n ) , Σ = ∑ ε n Σ ( n ) , Γ = ∑ µ = ∑ ε n Γ ( n ) n n n ε – perturbation series ordering parameter 7 / 16

  9. Pole mass 1 loop When ε is a loop order parameter, then GN model has:  0 0 0 0   0 0 ∗ ∗  0 0 0 0 0 ∗ ∗ ∗ Γ [ 0 ] = −  , Γ [ 1 ] =      ,     0 0 0 ∗ ∗ ∗ ∗ m 3   0 0 0 m 4 ∗ ∗ ∗ ∗ m 3 ≈ y 2 v 2 2 M , m 4 ≈ M Solving det ( µ +ΓΣ − 1 ) = 0 for ε = 1: µ 3 = m 3 − Γ [ 1 ] 33 − m 3 Σ [ 1 ] µ 1 = 0 33 µ 2 = − Γ [ 1 ] µ 4 = m 4 − Γ [ 1 ] 44 − m 4 Σ [ 1 ] 22 44 Off diagonal 2pt functions, e.g. Γ 23 enter only at ε = 2. 8 / 16

  10. Pole mass 1 loop µ 3 = m 3 − Γ [ 1 ] 33 − m 3 Σ [ 1 ] µ 1 = 0 33 µ 2 = − Γ [ 1 ] µ 4 = m 4 − Γ [ 1 ] 44 − m 4 Σ [ 1 ] 22 44 µ 2 is finite without any UV subtractions. µ 3 and µ 4 needs a subtraction scheme. Interested only in µ 2 and µ 3 Grimus and Lavoura (GL) appoximation [GL ’02]: they are finite, gauge invariant, no UV subtraction. How? 9 / 16

  11. Getting µ 3 without subtraction scheme ? We need all three masses, µ 1 , µ 2 and µ 3 , to be zero at � ε 0 � O : � ε 1 � There is no multiplicative counterterm possible for O � ε 1 � Then O result is finite and gauge invariant for µ 2 and µ 3 � ε 2 � Counterterms should appear only at O . 10 / 16

  12. Getting µ 3 without subtraction scheme ? We need all three masses, µ 1 , µ 2 and µ 3 , to be zero at � ε 0 � O : � ε 1 � There is no multiplicative counterterm possible for O � ε 1 � Then O result is finite and gauge invariant for µ 2 and µ 3 � ε 2 � Counterterms should appear only at O . Ordering series in terms of couplings? . � H 1 � � H 1 � . ν 3 N ν 3 y y H 2 H 2 . . . . N N ν 2 ν 2 ν 3 ν 3 d d d ′ d ′ Figure: These diagrams have the same number of Yukawa couplings 10 / 16

  13. Grimus –Lavoura approximation (my interpretation) Assign ordering parameter to all Yukawa couplings, i.e. 1 Y → ε 2 Y , then:  0 0 0 0   0 0 0 ∗  0 0 0 0 0 ∗ ∗ ∗ Γ GL [ 0 ] = −  , Γ GL [ 1 ] =      ,     0 0 0 0 0 ∗ ∗ ∗   0 0 0 m 4 ∗ ∗ ∗ ∗ m 3 ≈ y 2 v 2 ε 1 � � 2 M = O , m 4 ≈ M Solving det ( µ +ΓΣ − 1 ) = 0 for ε = 1: � 2 � µ 2 µ 3 = Γ GL [ 1 ] Γ GL [ 1 ] Γ GL [ 1 ] , µ 2 + µ 3 = − Γ GL [ 1 ] − Γ GL [ 1 ] − 22 33 23 22 33 Checked: we get the same Γ GL [ 1 ] as in [GL ’02] ij 11 / 16

  14. Determining Yukawas in GL In GL we have: ( µ 2 , µ 3 ) GL m S , U S , U PMNS , µ 4 , Z 3 , d , d ′ � � = f i , i m 3 ≡ Z 3 µ 3 ≈ y 2 v 2 , m S , U S -masses and mixings of scalars 2 µ 4 Assuming normal hierarchy for neutrinos, we solve for d and d ′ : � � µ GL 31 , µ GL ∆ m 2 ∆ m 2 = = 3 2 21 d GL , d ′ i = ˜ � � ⇒ f i ( m S , U S , U PMNS , µ 4 , Z 3 ) GL 12 / 16

  15. GL vs MSbar vs FlexibleSUSY poles Put solutions for d GL and d ′ GL in calculation X (MSbar or FlexibleSUSY): ( µ 2 , µ 3 ) X m S , U S , U PMNS , µ 4 , Z 3 , d GL , d ′ � � i = F i GL Define an ”error” function: � µ X ∆ m 2 i − ∆ µ i i 1 ( m S , U S , µ 4 , Z 3 , U PMNS ) ≡ , i = 2 , 3 � µ i ∆ m 2 i 1 We take a benchmark 2HDM point: m H = 300, m A = 411, m H ± = 442, GeV, sin θ H − A ≈ 0 . 07 Look how it depends on Z 3 = m 3 µ 3 and µ 4 Set charged lepton Yukawa couplings to the H 2 to zero for simplicity. 13 / 16

  16. GL vs MSbar vs FlexibleSUSY poles Δμ 3 Δμ 2 μ 3 μ 2 2.0 0.6 0.5 1.5 0.4 1.0 0.3 0.5 0.2 m 3 0.5 1.0 1.5 2.0 2.5 3.0 μ 3 0.1 - 0.5 m 3 0.5 1.0 1.5 2.0 2.5 3.0 μ 3 Figure: µ 4 = 10 5 , m H = 300, m A = 411, m H ± = 442 GeV; sin θ H − A ≈ 0 . 07. MSbar - blue, FS - orange 14 / 16

  17. GL vs MSbar vs FlexibleSUSY poles Δμ 3 Δμ 2 μ 3 μ 2 1.0 0.5 0.4 0.5 0.3 Log 10 ( μ 4 ) 2 4 6 8 0.2 - 0.5 0.1 Log 10 ( μ 4 ) 2 4 6 8 - 1.0 Figure: µ 3 m 3 = 1 . 5, m H = 300, m A = 411, m H ± = 442 GeV; sin θ H − A ≈ 0 . 07. MSbar - blue, FS - orange Numerical effects start at µ 4 = 10 6 and kills the calculation at 10 8 (MSbar with LoopTools). Radiative mass is more off for FS. 15 / 16

  18. Conclusions GL approximation – coupling ordering instead of loop (they differ for a seesaw) first order in GL is close to 1 loop approximation But how close, depends on parameters Which perturbation ordering is more accurate? Can we formulate some condition and/or estimate error? it is possible to use FS to reproduce neutrino data but up to M < 10 6 GeV (Maybe 10 8 in some cases) and not too big loop corrections for m 3 µ 3 . The dependence on scalar potential is not yet fully researched... Further step: relate scalar potential with neutrino Yukawa couplings and make it work with FS. 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend