probing neutrino masses and mixings with probing neutrino
play

Probing Neutrino Masses and Mixings with Probing Neutrino Masses and - PowerPoint PPT Presentation

1 Probing Neutrino Masses and Mixings with Probing Neutrino Masses and Mixings with Accelerator and Reactor Neutrinos Accelerator and Reactor Neutrinos Mike Shaevitz Shaevitz - Columbia University - Columbia University Mike Particles and


  1. 1 Probing Neutrino Masses and Mixings with Probing Neutrino Masses and Mixings with Accelerator and Reactor Neutrinos Accelerator and Reactor Neutrinos Mike Shaevitz Shaevitz - Columbia University - Columbia University Mike Particles and Nuclei International Conference Particles and Nuclei International Conference (PANIC11) July, 2011 (PANIC11) July, 2011

  2. 2 Outline • Introduction to Neutrino Mass and Mixing • Neutrino Oscillations among ν e , ν µ , and ν τ – The “Hunt” for the Little Mixing Angle θ 13 • New T2K and MINOS results – Plans and Prospects for Measuring CP Violation • Possible Oscillations to Sterile Neutrinos – Current Hints and Anomalies • Updated MiniBooNE ν e appearance results – Ideas for Future Searches • Final Comments

  3. 3 Absolute Mass Scale Determinations Current limit (Mainz): m ν < 2.2 eV @ 95% CL KATRIN Sensitivity: m ν < 0.2 eV @ 90% CL See J. Formaggio talk on Thurs. If detect 0 ν 2 β decay ⇒ Neutrinos are Majoranna particles and information on m ν at 0.1eV scale Limits sum of neutrino masses: Σ m ν < ~0.7 eV

  4. Neutrino Oscillations 4 The observation of neutrino oscillations where one type of neutrino can change (oscillate) into another type implies: 1. Neutrinos have mass and 2. Lepton number (electron, muon, tau) is not conserved ( ν e →ν µ , ν µ →ν τ , ν e →ν τ ) • The phenomena comes about because the mass and flavor states are different as parameterized by a mixing matrix More details on osc theory ( ) ( ) = sin 2 2 # sin 2 1.27 $ m 2 L / E Osc ! a " ! b see Boris Kayser talk yesterday P and J. Diaz on Thurs.. where # = mixing angle; $ m 2 = m b 2 % m a 2 ; L = travel distance; E = neutrino energy • Two types of oscillation searches: – Appearance Experiment: Look for appearance of ν e or ν τ in a pure ν µ beam vs. L and E – Disappearance Experiment: Look for a change in ν e/ µ flux as a function of L and E

  5. 5 Oscillations Parameterized by 3x3 Unitary Mixing Matrix solar atmospheric ! ! " = # " $ " = # 2 5 2 2 2 3 2 m 8 10 eV , m m 2.5 10 eV Current Measurements: 12 13 23 $ % " " " # ! " i $ cos sin 0 % cos 0 e sin $ 1 0 0 % CP 12 12 13 13 & ' & ' & ' = # " " ( ( " " U sin cos 0 0 1 0 0 cos sin & ' & ' & ' 12 12 23 23 & ' & ' & ' ! # " " # " " i 0 0 1 e sin 0 cos 0 sin cos ) * ) * CP ) * 13 13 23 23 “Little mixing angle, θ 13 ” 3-mixing Solar: θ 12 ~ 33° Atmospheric: θ 23 ~ 45° sin 2 2 θ 13 < 0.14 at 90% CL angles (or θ 13 < 11°) and δ = ??

  6. 6 Oscillation Summary Before PANIC11 New MiniBooNE ν µ consistent OPERA : ν µ →ν →ν τ ⇒ Confirmed by K2K and & ICARUS Minos accelerator neutrino exps ν e →ν →ν µ / ν τ ⇒ Confirmed by Kamland reactor neutrino exp

  7. 7 Big Questions in (3x3) Neutrino Mixing 1. What is ν e component in the ν 3 mass eigenstate? θ 13 ⇒ The size of the “little mixing angle”, θ 13 ? Only know θ 13 <11 0 – 8 2. What is the mass hierarchy? − Is the solar pair the least massive or not? 8 3. Do neutrinos exhibit CP violation, i.e. is δ≠ 0? Normal Hierarchy Inverted Hierarchy

  8. 8 The Search for the “Little Mixing Angle” ( θ 13 )

  9. 9 Experimental Limits before PANIC11 on θ 13 • Chooz Reactor Experiment – sin 2 2 θ < 0.14 90% CL • MINOS previous longbaseline appearance limits • Solar neutrino agreement including KAMLAND Global Fits: sin 2 2 ! 13 < 0.12@95% CL

  10. 10 Experimental Methods to Measure the “Little Mixing Angle”, θ 13 13 • Long-Baseline Accelerators: Appearance ( ν µ →ν e ) at Δ m 2 ≈ 2.5 × 10 -3 eV 2 – Look for appearance of ν e in a pure ν µ beam vs. L and E • Use near detector to measure background ν e 's (beam and misid) MINOS: <E ν > = 3.0 GeV T2K: L = 735 km <E ν > = 0.7 GeV NO ν A: L = 295 km <E ν > = 2.3 GeV L = 810 km ( See J. Nowak NOvA talk on Tuesday afternoon ) • Reactors: Disappearance ( ν e →ν e ) at Δ m 2 ≈ 2.5 × 10 -3 eV 2 – Look for a change in ν e flux as a function of L and E • Look for a non- 1/r 2 behavior of the ν e rate • Use near detector to measure the un-oscillated flux Double Chooz, RENO, Daya Bay: <E ν > = 3.5 MeV L = ~1100 m

  11. 11 Long-Baseline Accelerator Appearance Experiments Oscillation probability complicated and dependent not only on θ 13 but also: • 1. CP violation parameter ( δ ) 2. Mass hierarchy (sign of Δ m 31 2 ) “Matter Effects” 3. Size of sin 2 θ 23 ⇒ These extra dependencies are both a “curse” and a “blessing” Reactor Disappearance Experiments • Reactor disappearance measurements provide a straight forward method to measure θ 13 with no dependence on matter effects and CP violation

  12. 12 Long-baseline ν e Appearance Program

  13. Big News: T2K Sees Indication of 13 ν µ →ν e Oscillations! See K. Okumura talk yesterday for more details Far Detector Near Detector Delivered ¡protons ¡for ¡analysis ¡ RUN1 ¡(Jan. ¡2010 ¡~ ¡Jun. ¡2010) ¡ ¡ ¡3.23 ¡x ¡10 19 ¡p.o.t. ¡achieved ¡ave. ¡50 ¡kW ¡running RUN2 ¡(Nov. ¡2010 ¡~ ¡Mar. ¡2011) ¡ ¡11.09 ¡x ¡10 19 ¡p.o.t. ¡achieved ¡ave. ¡145 ¡kW ¡running ¡ ¡ ¡ ¡ ¡ à ¡ ¡ ¡ RUN1+RUN2total ¡ ¡ ¡ ¡1.43 ¡x ¡10 20 ¡p.o.t. ¡ ¡ ¡ (2% ¡of ¡final ¡goal) Select signal events and compare to 1.5 ± 0.3 event expected background BG ¡(NC ¡ π 0 ¡ ) ¡-­‑ ¡0.6 ¡events Signal ¡( ν e ¡ ¡CCQE) (Also intrinsic ν e in beam - 0.8 events)

  14. 14 Observe Six Events with 1.5 ± 0.3 Background Reconst. ¡ ν ¡energy 6 ¡candidate ¡events ¡observed Invariant ¡mass ¡ a?er ¡all ¡cuts Null ¡hypothesis ¡( θ 13 =0): ¡1.5 ¡±0.3 ¡(syst.) Null ¡Prob. ¡= ¡0.7% ¡corresponding ¡to ¡2.5 σ ν ¡beam Beam ¡coordinate out ¡of ¡FV in ¡bo[om

  15. New T2K Results for sin 2 2 θ 13 15 From ¡6 ¡events ¡versus ¡1.5 ± 0.3 ¡backgnd ¡(2.5 σ ) 90% ¡C.L. ¡allowed ¡regions ¡ ¡and ¡best ¡fit (for Δ m 223 =2.4 x 10 -3 eV 2 , δ CP =0) 0.03 < sin 2 2 θ 13 < 0.28 sin 2 2 θ 13 =0.11 (normal hierarchy) 0.04 < sin 2 2 θ 13 < 0.34 sin 2 2 θ 13 =0.14 (inverted hierarchy) March 11 Earthquake caused damage to J-PARC but not too extensive (See K.Tanaka plenary talk) Plan to resume J-PARC operation in Dec. 2011 and restart T2K data taking as soon as possible Published ¡in ¡Phys. ¡Rev. ¡Le[. ¡107, ¡041801 ¡(2011) after that. Could triple data set by Summer 2012 15

  16. 16 New MINOS ν µ →ν e Oscillation Search and Results for sin 2 2 θ 13 See L. Whitehead talk on Thurs. for more details • New selection criteria for ν e candidates – MINOS not optimized for isolating ν e – Developed new type of “library event matching” technique • Use nearly identical Near detector to make background prediction in Far detector. – Using Near detector is essential for the search • Look for an excess of Far detector events over background – Use MC to predict Far/Near ratio Best Fit: sin 2 2 ! 13 = 0.04(0.08) for normal (inverted) hierarchy Null (sin 2 2 ! 13 = 0.0) hypothesis excluded at 89% CL

  17. 17 Comparisons of T2K and MINOS sin 2 2 θ 13 Results Expected signal from T2K Best Fit value • Good compatibility between two results: – MINOS consistent with T2K best fit value – MINOS upper limit cuts into T2K larger allowed values ⇒ Need combined fit to establish the best sin 2 2 θ 13 range

  18. 18 Global Fits with New T2K and MINOS Results “Evidence of θ 13 > 0 from global neutrino data analysis”, Fogli et al. (arXiv:1106.6028v1 [hep-ph])) Greater than 3 ! evidence for " 13 > 0 # 0.084 ± 0.028 , old reactor fluxes % sin 2 2 " 13 = (1 ! ) $ 0.100 ± 0.028 , new reactor fluxes % &

  19. 19 Reactor Neutrino Experiments

  20. Reactor Measurements of θ 13 20 • Nuclear reactors are very intense sources of  ν e with a well understood spectrum – 3 GW → 6 × 10 20 ν e /s 700 events / yr / ton at 1500 m away – Reactor spectrum peaks at ~3.7 MeV – Oscillation Max. for Δ m 2 =2.5 × 10 -3 eV 2 at L near 1500 m 35 " m 2 = 2.5 # 10 -3 eV 2 Full Mixing 30 25 Disappearance Measurement: Observed Events Look for small rate deviation from 1/r 2 No Osc. 20 measured at near and far baselines 15 10 1500 m 5 0 1.50 2.50 3.50 4.50 5.50 6.50 7.50 8.50 E ! (MeV)

  21. 21 How to do better than previous CHOOZ reactor experiment? ⇒ Better detectors with reduced systematic uncertainties Gd ⇒ Use larger detectors ⇒ Reduce and control backgrounds ⇒ Use Near/Far Detectors ν e ν e ν e ν e oil - buffer γ - catcher ν e ν - target ν ~ 8 m ν e with Gd sin 2 2 2 Unoscillated Unoscillated sin 2 θ θ 13 13 flux flux ~7 m

  22. Double Chooz Reactor Experiment 22 in Ardennes, France See M. Kuse Talk yesterday for details

  23. 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend