models for neutrino masses and physics beyond standard
play

Models for Neutrino Masses and Physics Beyond Standard Model Salah - PowerPoint PPT Presentation

Models for Neutrino Masses and Physics Beyond Standard Model Salah Nasrj The 2nd Toyama International Workshop on Higgs as a Probe of New Physics 2015 (HPNP2015), Toyama, Japan February 12, 2015 1 / 27 . Salah Nasri Neutrino masses and


  1. Models for Neutrino Masses and Physics Beyond Standard Model Salah Nasrj The 2nd Toyama International Workshop on ”Higgs as a Probe of New Physics 2015” (HPNP2015), Toyama, Japan February 12, 2015 1 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 1/27 . .

  2. Introduction . The standard model is not the final theory . • Dark matter . Ω DM h 2 ] ( obs ) = 0 . 1199 ± 0 . 0027 . [ [Planck Collaboration (2013)] • Matter- antimatter asymmetry of the universe . η B : n B = ( 6 . 047 ± 0 . 074 ) × 10 − 10 . [Planck Collaboration (2013)] n γ • Neutrino Oscillations (masses and mixings) • Hierarchy problem • Strong CP problem • Gauge coupling unification • ect.. 2 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 2/27 . .

  3. Global Fit [Gonzalez-Garcia, Maltoni and Schwetz (2014)]. 3 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 3/27 . .

  4. Why m e >> m ν ̸ = 0? . SM is an effective theory . . ef f + L ( 6 ) L = L SM + L ( 5 ) ef f + .. [ Weinberg ( 1979 )] . . . . Λ ∼ 10 14 GeV ef f ∼ 1 m ν ∼ υ 2 . Λ L Φ L Φ ⇒ ⇒ L ( 5 ) . . Λ NP . Can be written in . 3 diff. forms : ....... + C αβ ( ¯ α i σ 2 Φ )( L T L c Type I = β i σ 2 Φ )+ h . c 2 Λ NP .... − C αβ σ L β )( Φ T i σ 2 ⃗ ( ¯ L c α i σ 2 ⃗ Type II = σ Φ )+ h . c 4 Λ NP .... + C αβ ( ¯ σ Φ )( L T Type III = L c α i σ 2 ⃗ β i σ 2 ⃗ σ Φ )+ h . c 2 Λ NP 4 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 4/27 . .

  5. . Seesaw mechanisms . . . Φ Y ν N R + 1 . Type I L ˜ 2 N T = ... + ¯ R C M R N R + h . c ⇒ . C αβ ν M − 1 Y ν = Y T Λ NP [ Minkowski; Yanagida; Ramond and Gell-Mann; Mohapatra and Senjanovic ] . . ∆ Tr ( ∆ † ∆ )+ µ ∆ Φ T i τ 2 ∆ † Φ + h αβ . Type II = ... + M 2 L T Ci τ 2 ∆ L β + h . c = h αβ µ ∆ . C αβ 2 Λ NP M 2 ∆ [ Maag, Watterich, Shafi, Lazaridis; Mohapatra, Senjanovic; Schechter, Valle ] . . Type III = .... + 1 . Σ R i M Σ i Σ c R M ∗ + h α i ¯ L α Σ R i ˜ [ R i + Σ c ] m ν = C αβ υ 2 Σ Σ R Φ + h . c ⇒ 2 . Λ NP [ Foot, He, Lew, Joshi; Ma ] 5 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 5/27 . .

  6. Leptogenesis. Ex: Type I . • Generate a B-L asymmetry through the . out-of-equilibrium decays of N iR into leptons and anti-leptons. ฀ [Fukugita and Yanagida (86)] • The CP-asymmetry from the decay of N i into lepton and anti-leptons: L ¯ ε i = Γ ( N i → L Φ ) − Γ ( N i → ¯ Φ ) [ Flanz et al , 94; Covi, Roulet, Vissani , 94 ] Γ ( N i → L Φ )+ Γ ( N i → ¯ L ¯ Φ ) • Part of it get converted to a baryon asymmetry via sphaleron transitions. 6 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 6/27 . .

  7. Leptogenesis. Ex: Type I • Wash out effects (in addition to the inverse decay) . . ∆ L = 1 scatterings involving top quark: 1. off-shell N 1 ¯ ( s-channel ) ↔ q , L ↔ t ¯ N 1 L t ¯ q ¯ ( t-channel ) ↔ L q , N 1 ¯ t ↔ L ¯ N 1 t q . . ∆ L = 2 scatterings 2. L ¯ ¯ L L ↔ ¯ Φ ¯ L ¯ ¯ L Φ ↔ Φ , Φ , L ↔ Φ Φ . • The final baryon asymmetry : Y B : = n B s ≃ − 4 × 10 − 3 × ε 1 × κ f × C s . . C s = 28 79 : [ Conversion factor ] ; κ f ( ˜ m 1 ) [ Efficiency factor ] ; m 1 = ( YY † ) 11 υ 2 . ˜ M 1 7 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 7/27 . .

  8. Leptogenesis. Ex: Type I After solving the Boltzmann equations: . 3 M 1 . ε 1 ≤ υ 2 ( m 3 − m 1 ) 16 π [ Davidson and Ibarra ( 2002 )] . M 1 > 10 9 GeV ⇒ . [ Buchmuller, Di Bari, Plumacher ( 2004 )] . Wash-out from ∆ L = 2 processes → √ . ¯ m 2 1 + m 2 2 + m 2 m : = 3 < 0 . 2 eV . . ⇒ ฀ m i < 0 . 11 eV 8 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 8/27 . .

  9. Some remarques • A super-heavy RHN is not accessible to collider experiments. • If one take naturalness seriously, then a super-heavy RH neutrinos distablises the EW scale (hierarchy problem): m ν M 3 1 1 < υ 2 ⇒ M < 10 7 GeV | δµ 2 | ≃ | Y α i | 2 M 2 4 π 2 ∑ i ; 4 π 2 υ 2 α , i [ De Gouvea, Hernandez and Tait ( 2014 )] • Super-heavy RHN could render the SM Higgs vacuum stability issue worse. • M 1 > 10 9 GeV ⇒ T RH > 10 9 GeV ⇒ Gravitino problem (if SUSY). • No relation or correlation between ε 1 and the low energy CP violation in the ν -sector. ⇒ Need to reduce the number of parameters: Flavor Symmetries/Textures/Ansatz. [E.g: Frampton, Glashow, Yanagida; Branco, Felipe, Joaquim, Masina, Rebelo and Savoy; Mohapatra, S. N, Yu, ....] 9 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 9/27 . .

  10. Radiative Neutrino Masses . M ν at One loop . (a) Zee Model [(1980)] S (+) ∼ ( 1 , 1 , + 1 ) , Φ 2 ∼ ( 1 , 2 , + 1 / 2 ) , ; A ∝ µ cot β f m 2 l + m 2 l f T ] [ M ν = A 16 π 2 M 2 2 ( ∆ m 2 ) 2 sin 2 2 θ 12 ≥ 1 − 1 [ Koide; Frampton, Oh, Yoshikawa; He ] 12 ∆ 2 m 23 16 . sin 2 2 θ 12 > 0 . 999 ⇒ . Ruled out by solar neutrino oscillation data . 10 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 10/27 .

  11. . Radiative Neutrino Masses . M ν at One loop . (b) Scotogenic Model [Ma (2006)] SU ( 2 ) L × U ( 1 ) Y × Z 2 : N i ∼ ( 1 , 0 , − 1 ) , η ∼ ( 2 , + 1 / 2 , − 1 ) with < η 0 > = 0 , ( M ν ) αβ ≃ λ 5 υ 2 M 2 ln m 2 h α n M n h β n [ ] n 0 If λ 5 << 1 8 π 2 ∑ 1 − m 2 m 2 M 2 0 − M 2 0 − M 2 n n n n . M 2 n ln m 2 [ ] i ∼ 10 − 10 ( ) For . ∼ 1 ⇒ λ 5 h 2 M i 1 − n 0 m 2 M 2 0 − M 2 TeV n The possible DM candidates: • The lightest N i if min ( M i ) < m R , I , or • η R if m R < m I , min ( M i ) , or • η I if m I < m R , min ( M i ) . 11 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 11/27 .

  12. . Radiative Neutrino Masses . M ν at One loop . (c) Scotogenic Model [Ma (2013)] SU ( 2 ) L × U ( 1 ) Y × U ( 1 ) D : η 1 ∼ ( 2 , + 1 / 2 , + 1 ) , η 2 ∼ ( 2 , + 1 / 2 , − 1 ) , N i = 1 , 2 , 3 ∼ ( 1 , 0 , + 1 ) . L , R [ ] m 2 ln m 2 m 2 ln m 2 ( h 1 ) n α M n ( h 2 ) n β + 1 ↔ 2 [ ] ( M ν ) αβ ∝ λ 5 ∑ 1 1 2 2 − 8 π 2 m 2 1 − M 2 M 2 m 2 2 − M 2 M 2 n n n n n The possible DM candidates: • The lightest N i if U ( 1 ) D is unbroken, or • The lightest neutral scalar mass eigenstate χ 1 if U ( 1 ) D is spontaneously broken and m χ 1 < min ( M i ) . 12 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 12/27 .

  13. . Radiative Neutrino Masses . M ν at One loop . (c) Scotogenic Model II [Ma (2013)] 900 900 0.5 0.5 800 800 0.4 0.4 700 0.3 700 0.3 600 0.2 0.2 600 500 ∆ T 0.1 ∆ T 0.1 500 400 0 0 300 400 -0.1 -0.1 200 300 -0.2 -0.2 100 200 -0.3 -0.3 0 m H ± 100 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 m χ 1 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 ∆ S ∆ S 1 m H ± 1 ≥ 100 GeV ; m χ 1 ≥ 90 GeV [ Ahriche, Gaber, Ho, S.N, Tandean (2015)] 13 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 13/27 .

  14. . Radiative Neutrino Masses . M ν at One loop . (c) Scotogenic Model II [Ma (2013)] 900 900 800 800 700 700 m H 1 (GeV) m H 2 (GeV) 600 600 500 500 400 400 300 300 200 100 200 100 200 300 400 500 600 700 800 900 200 300 400 500 600 700 800 900 m χ 1 (GeV) m χ 2 (GeV) The red ( 99% ), green ( 95% ), and blue ( 68% ) CL ellipsoids in the ( ∆ S , ∆ T ) plane. [ Ahriche, Gaber, Ho, S.N, Tandean (2015)] 14 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 14/27 .

  15. . Radiative Neutrino Masses . M ν at two loops . Zee-Babu Model S + ∼ ( 1 , 1 , + 1 ) , k ++ ∼ ( 1 , 1 , + 2 ) J ( m 2 h ) k ( ln x ) 2 − 1 { 1 + 3 ( 4 π 2 ) 2 µ m 2 [ ] x >> 1 ( M ν ) αβ ≃ 3 m 2 τ M 2 f ατ h ∗ π 2 J ( x ) = ττ f βτ 2 x → 0 1 . .One of the neutrinos must be massless . .It excludes the possibility for a quasi-degenerate ν spectrum 15 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 15/27 .

  16. . Radiative Neutrino Masses . M ν at three loops . n C l R α − 1 α C i σ 2 L β S + L ⊃ L SM + f αβ L T 1 + g α n N T 2 M n N c i N n + h . c − V ( Φ , S 1 , S 2 ) N i ∼ ( 1 , 1 , 0 ) , S + Z 2 : ( N i , S + 1 , S + 2 ) → ( − N i , S + 1 , − S + 1 , 2 ∼ ( 1 , 1 , + 1 ) ; 2 ) [L. Krauss, S. N, M. Trodden (2003)] [ Other example: Aoki, Kanemura, Seto . .Lightest of N ′ i s is a candidate for DM (2004)] 16 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 16/27 .

  17. . . M ν at three loops: Constraints . . • Fit the observed neutrino mass squared differences and mixings; • Satisfy the bound on LFV processes; [ → Br ( µ → e + γ ) < 5 × 10 − 13 ]; . . ) 4 ( . 1 + m 2 S 2 / m 2 1 . 3 × 10 − 2 m N 1 ) 2 S 1 Ω N 1 h 2 ≃ ( N 1 N 1 → l α l β ( exchange of S ± . . 2 ) ∑ α , β | g 1 α g ∗ 1 β | 2 1 + m 4 S 2 / m 4 135 GeV S 1 m S 1 . . . m S 2 . . . . .Only 15% of the scanned points survive the µ → e + γ constraints 17 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 17/27 .

  18. . . M ν at three loops: Type III . [Chen, McDonald, S. N (PLB 2014); Ahriche, McDonald, S. N (PRD 2014)] . E 0 = DM ; M 1 ∼ 2 . 7 TeV . . σ ( E 0 N → E 0 N ) ∼ 10 − 45 cm 2 ; below the LUX bound. . 18 / 27 . Salah Nasri Neutrino masses and Implications to Cosmology 18/27 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend