neutrino masses from tev scale new physics tests of
play

Neutrino Masses from TeV Scale New Physics -- Tests of Neutrino - PowerPoint PPT Presentation

Neutrino Masses from TeV Scale New Physics -- Tests of Neutrino Masses at the LHC Mu-Chun Chen, University of California at Irvine GGI Whats Nu?, June 26, 2012 Theoretical Challenges (i) Absolute mass scale: Why m << m u,d,e ?


  1. Neutrino Masses from TeV Scale New Physics -- Tests of Neutrino Masses at the LHC Mu-Chun Chen, University of California at Irvine GGI What’s Nu?, June 26, 2012

  2. Theoretical Challenges (i) Absolute mass scale: Why m ν << m u,d,e ? • seesaw mechanism: most appealing scenario ⇒ Majorana • UV completions of Weinberg operators HHLL ‣ Type-I seesaw: exchange of singlet fermions φ φ N R Minkowski, 1977; Yanagida, 1979; Y † Y N Glashow, 1979; N N R : SU(3) c x SU(2) w x U(1) Y ~(1,1,0) Gell-mann, Ramond, Slansky,1979; Mohapatra, Senjanovic, 1979; � � φ φ ‣ Type-II seesaw: exchange of weak triplet scalar µ ∆ Lazarides, 1980; Mohapatra, Senjanovic, 1980 ∆ Δ : SU(3) c x SU(2) w x U(1) Y ~(1,3,2) Y ∆ ‣ Type-III seesaw: exchange of weak triplet fermion � � alizations of the Seesaw Foot, Lew, He, Joshi, 1989; Ma, 1998 φ φ Σ R Σ R : SU(3) c x SU(2) w x U(1) Y ~(1,3,0) Y † Y Σ Σ � � 2 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

  3. Theoretical Challenges For a recent review on TeV scale seesaw: M.-C. C., J.R. Huang, arXiv:1105.3188 (i) Absolute mass scale: Why m ν << m u,d,e ? • seesaw mechanism: most appealing scenario ⇒ Majorana • can originate from GUT scale Physics: • indirect probe through LFV processes at colliders • seesaw scale can also be at TeV (if yukawa ~ 10 -6 allowed) • type II, III, inverse seesaw, ..... • TeV scale new physics ⇒ Dirac or Majorana • extra dimension: through small wave function overlap • associated phenomenology in extra dimension [Talk by Renata Zukanovich-Funchal] • extra U(1)’ gauge symmetry • associated Z’ phenomenology • Discrete R-Symmetries • simultaneous solution to mu problem and small Dirac mass 3 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

  4. Theoretical Challenges (ii) Flavor Structure: Why neutrino mixing large while quark mixing small? • seesaw doesn’t explain entire mass matrix w/ 2 large, 1 small mixing angles • family symmetry: there’s a structure, expansion parameter (symmetry effect) • mixing result from dynamics of underlying symmetry • if symmetry breaking at TeV ⇒ signatures at colliders • with SUSY: superpartners charged under family symmetry, can probe (indirectly) flavor sector even for high symmetry breaking scale 4 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

  5. Type-I Seesaw at Colliders Minkowski, 1977; Yanagida, 1979; Glashow, 1979; Gell-mann, Ramond, Slansky,1979; Mohapatra, Senjanovic, 1979; • assuming no new interaction: small neutrino mass from φ φ m D � m e � 10 − 4 GeV M R � 100 GeV N R Y † Y N N • same level of “un-naturalness” if small electron Yukawa allowed � � • RH neutrino may be within reach of LHC N R : SU(3) c x SU(2) w x U(1) Y ~(1,1,0) • Only way to test seesaw is by producing RH neutrinos • Yukawa ~ O(10 -6 ): irrelevant for colliders • RH neutrino production: gauge interaction through heavy-light mixing l − � 10 − 4 GeV ⇤ V = m D 100 GeV = 10 − 6 W M R N • Observable at colliders: require mixing Han, Zhang, 06; del Aguila, Aguila-Saavedra, V > 0 . 01 Pittau, 06; Bray, Lee, Pilaftsis, 07 5 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

  6. Type-I Seesaw at Colliders • Neutrino mass get contributions from different singlet fermions • neutrino mass small NOT due to seesaw, but cancellation among these contributions Buchmuller, Wyler ‘90; Pilaftsis, ‘92 • universality of weak interaction & Z-width: V < 0 . 1 • cancellation at 10 -8 level to get 0.1 eV neutrino mass � 2 � � | V α i | � M i ν ∼ | V α i | 2 M i = 10 7 eV m ( i ) . 0 . 01 100 GeV • with 3 singlets: light neutrino masses vanish if and only if • Dirac mass matrix has rank 1 Buchmuller, Greub ‘91; Ingelman, Rathsman, ‘93; Heusch, Minkowski, ‘94; Kersten, Smirnov, ‘07   y 1 y 2 y 3 m D = m α y 1 α y 2 α y 3   β y 1 β y 2 β y 3 y 2 + y 2 + y 2 1 2 3 = 0 • three contributions add up to zero M 1 M 2 M 3 • Yukawa couplings arbitrary ⇒ allowing large heavy-light mixing 6 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

  7. Type-I Seesaw at Colliders • symmetry justification for such cancellation: Kersten, Smirnov, 2007 • L-conservation; discrete subgroups of U(1) L • A4, S3 • neutrino masses arise as small perturbations to the cancellation structure • Collider signatures q 4 • Lepton Number Violating processes: q 2 W q 3 N 0 i q ¯ q → l − α l − β + jets l β W q 1 l α • leading order: m ν =0 by symmetry (L-conservation) • small L-violating effects ⇒ small neutrino mass • unobservable unless fine-tuned Neutrino mass generation & collider physics decouple 7 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

  8. Type-II Seesaw at Colliders Lazarides, 1980; Mohapatra, Senjanovic, 1980 • SU(2) triplet Higgs contribute to neutrino mass y ∆ LL φ φ µ ∆ √ n v ∆ = µ v 2 2 M 2 0 / ∆ , need Y ν µ ⌅ 10 − 12 ∆ µ : custodial symmetry breaking coupling in scalar potential H ∆ H † Y ∆ � � ⌅ alizations of the Seesaw Δ : SU(3) c x SU(2) w x U(1) Y ~(1,3,2) √ Y ν = 1 , µ ⌅ 10 − 12 or Y ν ⌅ µ ⌅ 10 − 6 y M ν = 2 Y ν v ∆ , • Higgs spectrum after SSB: 7 massive physical higgs bosons re seven massive physical Higgs H 1 , H 2 , A, H ± , and H ±± • Generic predictions: doubly charged Higgs • only couple to leptons, not quarks • unique signatures: different from SUSY scalar spectrum ∆ ++ ⇧ e + e + , µ + µ + , ⇧ + ⇧ + 8 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

  9. Type-II Seesaw at Colliders • doubly charged Higgs at the LHC: Han, Mukhopadhyaya, Si, Wang, ‘07; Akeroyd, Aoki, Sugiyama, ‘08; • produced through Drell-Yan Perez, Han, Huang, Li, Wang, ‘08; ... q ¯ q → γ ∗ , Z ∗ → H ++ H −− , q � → W ∗ → H ±± H ∓ . q ¯ , σ (fb) Perez, Han, Huang, Li, Wang, ‘08; ... 10 2 For a mass ~ (200-1000) GeV: 10 cross-section: 100-0.1 fb potentially observable rate with 1 high luminosity of 300 fb -1 for -1 M ∆ ~ 600 GeV 10 -2 10 200 400 600 800 1000 M H++ (GeV) 9 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

  10. Type-II Seesaw at Colliders • distinguishing NH vs IH mass spectra Perez, Han, Huang, Li, Wang, ‘08 - 10 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

  11. Type-II Seesaw at Colliders Perez, Han, Huang, Li, Wang, ‘08 Spectrum Relations Br( τ + τ + ), Br( µ + µ + ) � Br( e + e + ) NH ∆ m 2 Br( µ + τ + ) � Br( e + τ + ), Br( e + µ + ) 31 > 0 Br( τ + ¯ ν ), Br( µ + ¯ ν ) � Br( e + ¯ ν ) Br( e + e + ) > Br( µ + µ + ), Br( τ + τ + ) IH ∆ m 2 Br( µ + τ + ) � Br( e + τ + ), Br( e + µ + ) 31 < 0 Br( e + ¯ ν ) > Br( µ + ¯ ν ), Br( τ + ¯ ν ) Br( e + e + ) ≈ Br( µ + µ + ) ≈ Br( τ + τ + ) QD Br( µ + τ + ) ≈ Br( e + τ + ) ≈ Br( e + µ + ) (suppressed) Br( e + ¯ ν ) ≈ Br( µ + ¯ ν ) ≈ Br( τ + ¯ ν ) 11

  12. Type-III Seesaw at Colliders • Type-III seesaw: exchange of weak triplet fermion with Y = 0 Foot, Lew, He, Joshi, 1989; Ma, 1998 φ φ , Σ = ( Σ + , Σ 0 , Σ � ), Σ R Y † Y Σ Σ Σ R : SU(3) c x SU(2) w x U(1) Y ~(1,3,0) � � • small neutrino mass with TeV Σ R and Yukawa y ~ 10 -6 • triplet fermion produced through gauge (weak) interaction Franceschino, Hambye, Strumia,2008 pp ! Σ 0 Σ + ! ⌫ W + W ± ` ⌥ ! 4 jets + / E T + ` • TeV scale triplet decay : observable displaced vertex ◆ 2 ✓ 0 . 05 eV ◆✓ 100 GeV ⌧  1 mm ⇥ P i m i Λ • neutral component Σ 0 can be dark matter candidate P E. J. Chun, 2009 12 Mu-Chun Chen, UC Irvine Testing Neutrino Masses at the LHC GGI, 06/26/2012

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend