neutrino oscillations and beyond standard model physics
play

Neutrino Oscillations and Beyond Standard Model Physics University - PowerPoint PPT Presentation

Neutrino Oscillations and Beyond Standard Model Physics University of Oslo Thomas Schwetz-Mangold Oslo, Norway, 29 April 2015 T. Schwetz 1 The Standard Model of particle physics T. Schwetz 2 Neutrinos are special very light (neutrino


  1. Neutrino Oscillations and Beyond Standard Model Physics University of Oslo Thomas Schwetz-Mangold Oslo, Norway, 29 April 2015 T. Schwetz 1

  2. The Standard Model of particle physics T. Schwetz 2

  3. Neutrinos are special ◮ very light (neutrino mass � 10 − 6 electron mass) ◮ the only (electrically) neutral fermions feel only the weak force and gravitation ◮ most abundant fermion in the Universe 336 cosmic neutrinos/cm 3 (comparable to 411 CMB photons/cm 3 ) ◮ every second 10 14 neutrinos from the Sun pass through your body ◮ neutrinos play a crucial role for ◮ energy production in the Sun ◮ nucleo sysnthesis: BBN, SN ◮ generating the baryon asymmetry of the Universe (maybe) T. Schwetz 3

  4. ◮ In the Standard Model neutrinos are massless. ◮ The observation of neutrino oscillations implies that neutrinos have non-zero mass. ⇒ Neutrino mass implies physics beyond the Standard Model. T. Schwetz 4

  5. Outline Neutrino oscillations Absolute neutrino mass How to give mass to neutrinos Final remarks T. Schwetz 5

  6. Neutrino oscillations Outline Neutrino oscillations Absolute neutrino mass How to give mass to neutrinos Final remarks T. Schwetz 6

  7. Neutrino oscillations Flavour neutrinos neutrinos are “partners” of the charged leptons (doublet under the SU(2) gauge symmetry) ◮ A neutrino of flavour α is defined by the charged current interaction with the corresponding charged lepton, ex.: π + → µ + ν µ the muon neutrino ν µ comes together with the charged muon µ + T. Schwetz 7

  8. Neutrino oscillations Lepton mixing ◮ Flavour neutrinos ν α are superpositions of massive neutrinos ν i : 3 � ν α = ( α = e , µ, τ ) U α i ν i i = 1 ◮ U α i : unitary lepton mixing matrix: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ◮ mismatch between mass and interaction basis ◮ in complete analogy to the CKM matrix in the quark sector T. Schwetz 8

  9. Neutrino oscillations Neutrino oscillations detector neutrino source l α l β ν α ν β neutrino oscillations W W "long" distance e − i ( E i t − p i x ) | ν α � = U ∗ α i | ν i � | ν β � = U ∗ β i | ν i � � α i e − i ( E i t − p i x ) A ν α → ν β = � ν β | propagation | ν α � = U β i U ∗ i � 2 � � = � A ν α → ν β P ν α → ν β T. Schwetz 9

  10. Neutrino oscillations Neutrino oscillations: 2-flavour limit � � P = sin 2 2 θ sin 2 ∆ m 2 L cos θ sin θ U = , − sin θ cos θ 4 E ν ∆ m 2 = m 2 2 − m 2 → oscillations are sensitive to mass differences 1 1 "short" "very long" "long" distance distance distance 0.8 2 4 π / ∆ m 0.6 P αβ ∆ m 2 L = 1 . 27 ∆ m 2 [ eV 2 ] L [ km ] 2 2 θ 0.4 sin 4 E ν E ν [ GeV ] 0.2 0 0.1 1 10 100 L / E ν (arb. units) T. Schwetz 10

  11. Neutrino oscillations Neutrinos oscillate! ◮ atmospheric neutrinos Super-Kamiokande 1998: strong zenith angle dependence of the observed flux of ν µ consistent with ν µ → ν τ oscillations T. Schwetz 11

  12. Neutrino oscillations Neutrinos oscillate! KamLAND reactor neutrino Data - BG - Geo ν CHOOZ data 1.4 e experiment ( ¯ ν e → ¯ ν e ) Expectation based on osci. parameters 1.2 determined by KamLAND Survival Probability 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 60 70 L /E (km/MeV) 0 ν e 2004: evidence for spectral distortion T. Schwetz 12

  13. Neutrino oscillations Neutrinos oscillate! KamLAND reactor neutrino Data - BG - Geo ν CHOOZ data 1.4 e experiment ( ¯ ν e → ¯ ν e ) Expectation based on osci. parameters 1.2 determined by KamLAND Survival Probability 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 60 70 L /E (km/MeV) 0 ν e 2004: evidence for spectral distortion MINOS; T2K, 2015 ν µ → ν µ DayaBay, 2013 ¯ ν e → ¯ ν e T. Schwetz 12

  14. Neutrino oscillations Global data on neutrino oscillations various neutrino sources, vastly different energy and distance scales: sun reactors atmosphere accelerators Homestake,SAGE,GALLEX KamLAND, D-CHOOZ SuperKamiokande K2K, MINOS, T2K SuperK, SNO, Borexino DayaBay, RENO OPERA ◮ global data fits nicely with the 3 neutrinos from the SM 3-neutrino osc. params.: θ 12 , θ 13 , θ 23 , δ, ∆ m 2 21 , ∆ m 2 31 ◮ a few “anomalies” at 2-3 σ : LSND, MiniBooNE, reactor anomaly, no LMA MSW up-turn of solar neutrino spectrum T. Schwetz 13

  15. Neutrino oscillations 3-flavour global fit to oscillation data Global fit to 3-flavour oscillations with C. Gonzalez-Garcia, M. Maltoni, 1409.5439 2 x up − x low precision @ 3 σ : x up + x low Normal Ordering (∆ χ 2 = 0 . 97) Inverted Ordering (best fit) Any Ordering bfp ± 1 σ 3 σ range bfp ± 1 σ 3 σ range 3 σ range sin 2 θ 12 14% (4.6 o ) 0 . 304 +0 . 012 0 . 304 +0 . 012 0 . 270 → 0 . 344 0 . 270 → 0 . 344 0 . 270 → 0 . 344 − 0 . 012 − 0 . 012 33 . 48 +0 . 77 33 . 48 +0 . 77 θ 12 / ◦ 31 . 30 → 35 . 90 31 . 30 → 35 . 90 31 . 30 → 35 . 90 − 0 . 74 − 0 . 74 sin 2 θ 23 32% (15 o ) 0 . 451 +0 . 051 0 . 577 +0 . 027 0 . 382 → 0 . 643 0 . 389 → 0 . 644 0 . 385 → 0 . 644 − 0 . 026 − 0 . 035 42 . 2 +2 . 9 49 . 4 +1 . 6 θ 23 / ◦ 38 . 2 → 53 . 3 38 . 6 → 53 . 3 38 . 4 → 53 . 3 − 1 . 5 − 2 . 0 sin 2 θ 13 15% (1.2 o ) 0 . 0218 +0 . 0010 0 . 0219 +0 . 0010 0 . 0186 → 0 . 0250 0 . 0188 → 0 . 0251 0 . 0188 → 0 . 0251 − 0 . 0010 − 0 . 0011 8 . 50 +0 . 20 8 . 52 +0 . 20 θ 13 / ◦ 7 . 85 → 9 . 10 7 . 87 → 9 . 11 7 . 87 → 9 . 11 − 0 . 21 − 0 . 21 ∞ 305 +39 251 +66 δ CP / ◦ 0 → 360 0 → 360 0 → 360 − 51 − 59 14% ∆ m 2 21 7 . 50 +0 . 19 7 . 50 +0 . 19 7 . 03 → 8 . 09 7 . 03 → 8 . 09 7 . 03 → 8 . 09 10 − 5 eV 2 − 0 . 17 − 0 . 17 ∆ m 2 » – 11% +2 . 325 → +2 . 599 3 i +2 . 458 +0 . 046 − 2 . 448 +0 . 047 +2 . 317 → +2 . 607 − 2 . 590 → − 2 . 307 10 − 3 eV 2 − 0 . 047 − 0 . 047 − 2 . 590 → − 2 . 307 T. Schwetz 14

  16. Neutrino oscillations Neutrino mass states and mixing NORMAL INVERTED ν e ν ν 2 3 ν 1 ν µ [mass] 2 ντ ν 2 ν 3 ν 1 T. Schwetz 15

  17. Neutrino oscillations The SM flavour puzzle Lepton mixing:   θ 12 ≈ 33 ◦ O ( 1 ) O ( 1 ) ǫ 1 U PMNS = √ O ( 1 ) O ( 1 ) O ( 1 ) θ 23 ≈ 45 ◦   3   O ( 1 ) O ( 1 ) O ( 1 ) θ 13 ≈ 9 ◦ Quark mixing: θ 12 ≈ 13 ◦   1 ǫ ǫ θ 23 ≈ 2 ◦ U CKM = ǫ 1   ǫ   1 θ 13 ≈ 0 . 2 ◦ ǫ ǫ T. Schwetz 16

  18. Neutrino oscillations Neutrino masses NORMAL INVERTED ν e ν ν 2 3 ν 1 ν µ [mass] 2 ντ ν 2 ν 3 ν 1 ◮ at least two neutrinos are massive ◮ typical mass scales: � � ∆ m 2 ∆ m 2 21 ∼ 0 . 0086 eV , 31 ∼ 0 . 05 eV much smaller than other fermion masses ( m e ≈ 0 . 5 × 10 6 eV) ◮ 2 possibilities for the ordering of the mass states: normal vs inverted almost complete degeneracy in present data ( ∆ χ 2 ≈ 1) T. Schwetz 17

  19. Neutrino oscillations Normal versus “abnormal” for inverted ordering leptons behave very different from quarks: ◮ the neutrino mass state mostly related to 12 10 t first generation would not be lightest charged fermions 10 b 10 c τ ◮ there is strong degeneracy between at least s 8 10 µ d two mass states: u 6 10 e ∆ m 2 m 2 − m 1 mass [eV] 21 4 ≡ = 2 deg 10 ¯ ( m 1 + m 2 ) 2 m 2 10 ∆ m 2 ∆ m 2 1 ≤ 1 21 21 ≈ 0 2 | ∆ m 2 31 | + m 2 2 | ∆ m 2 10 31 | QD 3 neutrinos -2 10 ν 1 ν 3 ν 2 IH NH � � m i -4 10 � − 2 1 . 3 × 10 − 3 ≤ deg ≤ 1 . 8 × 10 − 2 1 2 3 generation 0 . 5 eV T. Schwetz 18

  20. Neutrino oscillations How to determine the mass ordering ◮ Find out whether the matter resonance in the 1-3 sector happens for neutrinos or antineutrinos ◮ long-baseline accelerator experiments: NOvA, LBNF ◮ atmospheric neutrino experiments: INO, PINGU, ORCA, HyperK ◮ Interference between oscillations with ∆ m 2 21 and ∆ m 2 31 ◮ reactor experiments at 50 km: JUNO, RENO-50 T. Schwetz 19

  21. Neutrino oscillations Prospects for the mass ordering determination probability to exclude the wrong ordering at 3 σ Blennow, Coloma, Huber, TS, 2013 Blennow, TS, 2013, 2012 T. Schwetz 20

  22. Neutrino oscillations CP violation Leptonic CP violation will manifest itself in a difference of the vacuum oscillation probabilities for neutrinos and anti-neutrinos Cabibbo, 1977; Bilenky, Hosek, Petcov, 1980, Barger, Whisnant, Phillips, 1980 Leptogenesis: ◮ provides mechanism to generate baryon asymmetry in the Universe ◮ requires CP violation at high temperatures (one of the Sacharov conditions) ◮ possible connection to CP violation in neutrino oscillations WARNING: model dependent! T. Schwetz 21

  23. Neutrino oscillations The size of leptonic CP violation J = | Im ( U α 1 U ∗ α 2 U ∗ P ν α → ν β − P ¯ ν β ∝ J , β 1 U β 2 ) | ν α → ¯ J : leptonic analogue to Jarlskog-invariant Jarlskog, 1985 using the standard parameterization: 13 sin δ ≡ J max sin δ J = s 12 c 12 s 23 c 23 s 13 c 2 present data at 1 (3) σ NuFit 2.0 J max = 0 . 0329 ± 0 . 0009 ( ± 0 . 0027 ) compare with Jarlskog invariant in the quark sector: J CKM = ( 3 . 06 + 0 . 21 − 0 . 20 ) × 10 − 5 ◮ CPV for leptons might be a factor 1000 larger than for quarks ◮ OBS: for quarks we know J , for leptons only J max (do not know δ !) T. Schwetz 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend