rigorous computations for infinite dimensional dynamical
play

Rigorous computations for infinite dimensional dynamical systems - PowerPoint PPT Presentation

Rigorous computations for infinite dimensional dynamical systems Jean-Philippe Lessard Southern Ontario Dynamics Day Toronto April 12th, 2013 What is a dynamical system? What is a dynamical system? Popular answer: a math subject that


  1. Ω s Q: How to find a ball such that x ( r ) B ¯ • ˆ x x ( r ) is a contraction ? T : B ¯ x ( r ) → B ¯ ν ¯ • x x ( r ) B ¯ Ball of radius r x ( r ) = ¯ x + B ( r ) B ¯ centered at 0 in the space Ω s

  2. Ω s Q: How to find a ball such that x ( r ) B ¯ • ˆ x x ( r ) is a contraction ? T : B ¯ x ( r ) → B ¯ ν ¯ • x x ( r ) B ¯ Ball of radius r x ( r ) = ¯ x + B ( r ) B ¯ centered at 0 in the space Ω s A: : upper bounds satisfying Radii polynomials { p k ( r ) } k � − r � � � � � � � � T ν (¯ x ) − ¯ � + sup D x T ν (¯ x + b ) c ≤ p k ( r ) x � � � � ω s k k � � b,c ∈ B ( r ) k

  3. Ω s Q: How to find a ball such that x ( r ) B ¯ • ˆ x x ( r ) is a contraction ? T : B ¯ x ( r ) → B ¯ ν ¯ • x x ( r ) B ¯ Ball of radius r x ( r ) = ¯ x + B ( r ) B ¯ centered at 0 in the space Ω s A: : upper bounds satisfying Radii polynomials { p k ( r ) } k � − r � � � � � � � � T ν (¯ x ) − ¯ � + sup D x T ν (¯ x + b ) c ≤ p k ( r ) x � � � � ω s k k � � b,c ∈ B ( r ) k Lemma: If there exists such that for all , p k ( r ) < 0 k r > 0 then there is a unique s.t. . f (ˆ x, ν ) = 0 x ( r ) x ∈ B ¯ ˆ proof. Banach fixed point theorem.

  4. Analytic estimates to construct the polynomials Suppose there exist A 1 , A 2 , . . . , A n such that for every j ∈ { 1 , . . . , n } and every k ∈ Z d , we have that � ≤ A j � � � c ( j ) , � � k = | k 1 | s 1 · · · | k d | s d ω s k ω s k Then, for any k ∈ Z d , we get that ⌅ ⇧ n ⌥ α ( n ) � � ⇥ c (1) ∗ · · · ∗ c ( n ) ⇤ k A j . � ≤ � � ⌃ ω s � k k j =1 � � � � � � A 1 · · · A n � ⇥ c (1) ∗ · · · ∗ c ( n ) ⇤ � ⌦ c (1) k 1 · · · c ( n ) ⌦ � � = Proof. � � ≤ � k n � ω s ω s � � k � � k n k 1 k 1+ ··· + k n = k k 1+ ··· + k n = k � � k 1 ,..., k n ∈ Z d k 1 ,..., k n ∈ Z d � � ⌅ ⇧ ⌅ ⇧ n 1 ↵ ⌦ � = A j ⌃ ⌥ � ω s k 1 · · · ω s ⌃ ⌥ k n j =1 k 1+ ··· + k n = k k 1 ,..., k n ∈ Z d ⌅ ⇧ ⌅ ⇧ n d 1 ↵ ⌦ ↵ � A j = ⌃ ⌥ � ω s j j · · · ω s j ⌃ ⌥ k n k 1 j =1 j =1 k 1+ ··· + k n = k j k 1 ,..., k n ∈ Z d ⌅ ⇧ ⌅ ⇧ n d � 1 ↵ ↵ ⌦ � A j = � ω s j j · · · ω s j ⌃ ⌥ � k n k 1 j =1 j =1 k 1 j + ··· + kn ⌃ j = kj j ⌥ k 1 j ,...,k n j ∈ Z ⌅ ⇧ ⌅ ⇧ α ( n ) n d n ⌥ α ( n ) ↵ ↵ k j ↵ k A j = A j . ≤ ω s j ⌃ ⌥ ⌃ ω s k k j j =1 j =1 j =1 M. Gameiro & J.-P. L. Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs. Journal of Differential Equations , 2010.

  5. Verifying the uniform ⇥ Radii polynomials { p k ( r, ∆ ν ) } contraction principle. : uniform contraction on [ ν 0 , ν 0 + ∆ ν ] ∃ r > 0 s.t. p k ( r, ∆ ν ) < 0 , ∀ k = ⇒ T The rigorous computational method x + ∆ ν ˙ x ν = ¯ x B x ν ( r ) f ( x, ν ) = 0 x ( r ) B ¯ • || x || s ¯ x • • ν 0 + ∆ ν ν 0 ν

  6. Gluing the B + smooth pieces 1 B 0 B 1 • ¯ x 1 B − 1 • ¯ x 0 ν 0 ν 1 ν 2

  7. Gluing the B + smooth pieces 1 B 0 B 1 • ¯ x 1 B − 1 • ¯ x 0 ν 0 ν 1 ν 2 { ( x, ν ) | f ( x, ν ) = 0 , ν ∈ [ ν 0 , ν 1 ] }

  8. Gluing the B + smooth pieces 1 B 0 B 1 • ¯ x 1 B − 1 • ¯ x 0 ν 0 ν 1 ν 2 { ( x, ν ) | f ( x, ν ) = 0 , ν ∈ [ ν 0 , ν 2 ] }

  9. Gluing the B + smooth pieces 1 B 0 B 1 • ¯ x 1 B − 1 • ¯ x 0 ν 0 ν 1 ν 2 { ( x, ν ) | f ( x, ν ) = 0 , ν ∈ [ ν 0 , ν 2 ] } • Global smooth curves of solutions. • Local uniqueness by the Banach fixed point theorem. • Proof of non existence of secondary bifurcations along the curves.

  10. Applications • Initial value problems of ODEs (Chebyshev in time) • Boundary value problems of ODEs (Chebyshev in time) • Periodic solutions of ODEs (Fourier in time) • Connecting orbits of ODEs (Chebyshev in time + parameterization of invariant manifolds using power series) • Equilibria of PDEs (Fourier in space) • Periodic solutions of delay differential equations (Fourier in time) • Minimizers of action functionals (Chebyshev in time) • Periodic solutions of PDEs (Fourier in space and in time)

  11. Applications • Initial value problems of ODEs (Chebyshev in time) • Boundary value problems of ODEs (Chebyshev in time) • Periodic solutions of ODEs (Fourier in time) • Connecting orbits of ODEs (Chebyshev in time + parameterization of invariant manifolds using power series) • Equilibria of PDEs (Fourier in space) • Periodic solutions of delay differential equations (Fourier in time) • Minimizers of action functionals (Chebyshev in time) • Periodic solutions of PDEs (Fourier in space and in time)

  12. 1. Homoclinic and heteroclinic orbits of ODEs (traveling waves) dx ODEs dt = f ( x ) t → ± ∞ x ( t ) = x ± ∈ R n lim x + = x − x + 6 = x − homoclinic orbit heteroclinic orbit

  13. Rigorous Computations Connecting Orbits Compute a set of equilibria.

  14. Rigorous Computations Connecting Orbits Compute a set of equilibria. Local representation of the invariant manifolds. Parameterization method

  15. Rigorous Computations Connecting Orbits Compute a set of equilibria. Local representation of the invariant manifolds. Parameterization method Connecting orbits between the equilibria? Boundary value problem Chebyshev series Radii polynomials

  16. 2. Equilibria of PDEs Cahn-Hilliard 3D  u t = − ∆ ( 1 ν ∆ u + u − u 3 ) , in Ω π π Ω = [0 , π ] × [0 , 1 . 001] × [0 , 1 . 002]  ∂ n = ∂ ∆ u ∂ u = 0 , on ∂ Ω  ∂ n 0.6 (1) (2) 0.5 (3) (4) (5) 0.4 (6) � u � (7) 0.3 0.2 0.1 0 0.5 1 1.5 2 2.5 3 3.5 ν 2 1

  17. Systems of reaction-diffusion PDEs ∂ t x = d ∆ x + ( r 1 − a 1 ( x + y ) − b 1 z ) x + 1 1 − z − x z � � ⇥ ⇥ ⇤ y , ⌃ ⌃ ε N N ⌃ ⌃ ⌃ ⇧ ∂ t y = ( d + β N ) ∆ y + ( r 1 − a 1 ( x + y ) − b 1 z ) y − 1 1 − z − x z � � ⇥ ⇥ y , 0.4 ε N N ⌃ ⌃ ⌃ ⌃ ⌃ ∂ t z = d ∆ z + ( r 2 − b 2 ( x + y ) − a 2 z ) z. ⌅ 0.35 0.3 0.25 z (0) 0.2 0.15 0.1 0.05 d 0 0 0.005 0.01 0.015 0.02 0.025 0.03

  18. Systems of reaction-diffusion PDEs ∂ t x = d ∆ x + ( r 1 − a 1 ( x + y ) − b 1 z ) x + 1 1 − z − x z � � ⇥ ⇥ ⇤ y , ⌃ ⌃ ε N N ⌃ ⌃ ⌃ ⇧ ∂ t y = ( d + β N ) ∆ y + ( r 1 − a 1 ( x + y ) − b 1 z ) y − 1 1 − z − x z � � ⇥ ⇥ y , 0.4 ε N N ⌃ ⌃ ⌃ ⌃ ⌃ • ∂ t z = d ∆ z + ( r 2 − b 2 ( x + y ) − a 2 z ) z. ⌅ 0.35 • 0.3 • 11 co-existing steady • states at d = 0 . 006 0.25 • z (0) 0.2 • 0.15 • • • 0.1 • • 0.05 d 0 0 0.005 0.01 0.015 0.02 0.025 0.03

  19. 3. Periodic solutions of delay equations y 0 ( t ) = F ( y ( t ) , y ( t − τ 1 ) , . . . , y ( t − τ d )) , 2 7 1.8 6 x 3 5 4 3 1.6 2 1 6 0 5 x 2 − 1 0 0.5 1 1.5 2 2.5 3 3.5 4 1.4 3 k x k ` 2 2 1 4 3.5 0 1.2 3 x 1 − 1 2.5 0 0.5 1 1.5 2 2.5 3 3.5 2 1.5 1 0.5 1 0 − 0.5 − 1 0 0.5 1 1.5 2 2.5 3 3.5 f ( x, ν ) = 0 0.8 2.5 3 3.5 4 ν y 0 ( t ) = − ν [ y ( t − τ 1 ) + y ( t − τ 2 )] [1 + y ( t )] ,

  20. 1.1 5 4 1.05 3 2 1 1 0 − 1 0 0.5 1 1.5 2 2.5 3 3.5 4 0.95 0.9 2.5 2 k x k ` 2 1.5 0.85 1 0.5 0 0.8 − 0.5 − 1 0 0.5 1 1.5 2 2.5 3 3.5 4 3 2.5 0.75 2 1.5 1 0.5 0.7 0 − 0.5 − 1 0 0.5 1 1.5 2 2.5 3 3.5 4 0.65 ν 0 0.05 0.1 0.15 0.2 0.25 y 0 ( t ) = − [2 . 425 y ( t − τ 1 ) + 2 . 425 y ( t − τ 2 ) + ν y ( t − τ 3 )] [1 + y ( t )] ,

  21. ������������������������������������������� �������������������������������� ����������� � ���������������������������������������������������������� 4. Minimizers of action functionals �������������� ������������������������������������������� �������������� Ginzburg–Landau energy: a model of superconductivity ����������������������������������������������������������������������������������� Z d φ 2 ( φ 2 − 2) + 2( φ 0 ) 2 G = G ( φ , a ) = 1 + 2 φ 2 a 2 + 2( a 0 − h e ) 2 � � ���������������������������������� dt. 2 d κ 2 � d φ > 0 � ������������������������������������������������� a � ����������������������� ���������������������������������� � ������������������������������������ � ���������������������� � �������������������������� ���������������������������������� ������������������� � �������� ��� ������������������������������ ���������������������������������� ����������������� ����������������������������������������������������������� �

  22. ������������������������������������������� ������������������������������������������� �������������������������������� �������������������������������� ����������� � ���������������������������������������������������������� ����������� � ���������������������������������������������������������� 4. Minimizers of action functionals �������������� ������������������������������������������� �������������� �������������� ������������������������������������������� �������������� Ginzburg–Landau energy: a model of superconductivity ����������������������������������������������������������������������������������� ����������������������������������������������������������������������������������� Z d φ 2 ( φ 2 − 2) + 2( φ 0 ) 2 G = G ( φ , a ) = 1 + 2 φ 2 a 2 + 2( a 0 − h e ) 2 � � ���������������������������������� ���������������������������������� dt. 2 d κ 2 � d � ������������������������������������������������� φ > 0 � ������������������������������������������������� � ����������������������� a � ����������������������� ���������������������������������� ���������������������������������� Parameters d � ������������������������������������ � ������������������������������������ h e � ���������������������� � ���������������������� κ � �������������������������� � �������������������������� ���������������������������������� ���������������������������������� ������������������� � �������� ��� ������������������� � �������� ��� ������������������������������ ������������������������������ ���������������������������������� ���������������������������������� ����������������� ����������������������������������������������������������� ����������������� ����������������������������������������������������������� � �

  23. ������������������������������������������� ������������������������������������������� �������������������������������� �������������������������������� ����������� � ���������������������������������������������������������� ����������� � ���������������������������������������������������������� 4. Minimizers of action functionals �������������� ������������������������������������������� �������������� �������������� ������������������������������������������� �������������� Ginzburg–Landau energy: a model of superconductivity ����������������������������������������������������������������������������������� ����������������������������������������������������������������������������������� Z d φ 2 ( φ 2 − 2) + 2( φ 0 ) 2 G = G ( φ , a ) = 1 + 2 φ 2 a 2 + 2( a 0 − h e ) 2 � � ���������������������������������� ���������������������������������� dt. 2 d κ 2 � d � ������������������������������������������������� φ > 0 � ������������������������������������������������� � ����������������������� a � ����������������������� κ = 0 . 3 , d = 4 Bifurcation diagram for kappa = 0.3, d = 4 ���������������������������������� ���������������������������������� Bifurcation Asym Parameters Sym 1 d � ������������������������������������ � ������������������������������������ h e � ���������������������� � ���������������������� 0.8 κ � �������������������������� � �������������������������� 0.6 φ ( d ) ���������������������������������� ���������������������������������� 0.4 Co-existence of ������������������� � �������� ��� ������������������� � �������� ��� nontrivial solutions 0.2 ������������������������������ ������������������������������ 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 ���������������������������������� h h e ���������������������������������� ����������������� ����������������������������������������������������������� ����������������� ����������������������������������������������������������� � �

  24. 5. Periodic orbits of PDEs Kuramoto- Sivashinski equation ( u t = − ν u yyyy − u yy + 2 uu y (KS) u ( t, y ) = u ( t, y + 2 π ) , u ( t, − y ) = − u ( t, y )

  25. 5. Periodic orbits of PDEs Kuramoto- Sivashinski equation ( u t = − ν u yyyy − u yy + 2 uu y (KS) u ( t, y ) = u ( t, y + 2 π ) , u ( t, − y ) = − u ( t, y ) Popular model to analyze weak turbulence or spatiotemporal chaos

  26. 5. Periodic orbits of PDEs Kuramoto- Sivashinski equation ( u t = − ν u yyyy − u yy + 2 uu y (KS) u ( t, y ) = u ( t, y + 2 π ) , u ( t, − y ) = − u ( t, y ) Popular model to analyze weak turbulence or spatiotemporal chaos A common approach to study time-periodic solutions of (KS) is to construct a Poincaré map via numerical integration of the flow, and to look for fixed points of this map on a prescribed Poincaré section.

  27. 5. Periodic orbits of PDEs Kuramoto- Sivashinski equation ( u t = − ν u yyyy − u yy + 2 uu y (KS) u ( t, y ) = u ( t, y + 2 π ) , u ( t, − y ) = − u ( t, y ) Popular model to analyze weak turbulence or spatiotemporal chaos A common approach to study time-periodic solutions of (KS) is to construct a Poincaré map via numerical integration of the flow, and to look for fixed points of this map on a prescribed Poincaré section. Christiansen, Cvitanovic, Lan, Johnson, Jolly, Kevrekidis, Putkaradze, ...

  28. 5. Periodic orbits of PDEs Kuramoto- Sivashinski equation ( u t = − ν u yyyy − u yy + 2 uu y (KS) u ( t, y ) = u ( t, y + 2 π ) , u ( t, − y ) = − u ( t, y ) Popular model to analyze weak turbulence or spatiotemporal chaos A common approach to study time-periodic solutions of (KS) is to construct a Poincaré map via numerical integration of the flow, and to look for fixed points of this map on a prescribed Poincaré section. Christiansen, Cvitanovic, Lan, Johnson, Jolly, Kevrekidis, Putkaradze, ... Goal: propose an method (based on spectral methods and fixed point theory) to rigorously compute time periodic solutions of PDEs.

  29. Letting L = 2 π p , the time-periodic solutions of period p of (KS) can be expanded using the Fourier expansion X where for k = ( k 1 , k 2 ) ∈ Z 2 , ψ k = e iLk 1 t e ik 2 y . u ( t, y ) = c k ψ k , k ∈ Z 2

  30. Letting L = 2 π p , the time-periodic solutions of period p of (KS) can be expanded using the Fourier expansion X where for k = ( k 1 , k 2 ) ∈ Z 2 , ψ k = e iLk 1 t e ik 2 y . u ( t, y ) = c k ψ k , k ∈ Z 2 8 k = (0 , 0) L, > > k = (0 , k 2 ) , k 2 6 = 0 b k , < x k = ✓ ◆ a k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > b k : def def = Re ( c k ) and b k = Im ( c k ) . a k

  31. Letting L = 2 π p , the time-periodic solutions of period p of (KS) can be expanded using the Fourier expansion X where for k = ( k 1 , k 2 ) ∈ Z 2 , ψ k = e iLk 1 t e ik 2 y . u ( t, y ) = c k ψ k , k ∈ Z 2 8 k = (0 , 0) L, Unknowns > > k = (0 , k 2 ) , k 2 6 = 0 b k , < x k = ✓ ◆ a k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > b k : def def = Re ( c k ) and b k = Im ( c k ) . a k

  32. Letting L = 2 π p , the time-periodic solutions of period p of (KS) can be expanded using the Fourier expansion X where for k = ( k 1 , k 2 ) ∈ Z 2 , ψ k = e iLk 1 t e ik 2 y . u ( t, y ) = c k ψ k , k ∈ Z 2 8 k = (0 , 0) L, Unknowns > > k = (0 , k 2 ) , k 2 6 = 0 b k , < x k = ✓ ◆ a k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > b k : F def def = Re ( c k ) and b k = Im ( c k ) . a k Plugging the space-time Fourier expansion into (KS) results in solving, for all k 2 Z 2 X X def i k 1 2 c k 1 c k 2 = µ k c k � k 2 i c k 1 c k 2 = 0 , = µ k c k � 2 h k k 1 + k 2 = k k 1 + k 2 = k def = ik 1 L + ν k 4 2 � k 2 where µ k = µ k 1 ,k 2 2 .

  33. Letting L = 2 π p , the time-periodic solutions of period p of (KS) can be expanded using the Fourier expansion X where for k = ( k 1 , k 2 ) ∈ Z 2 , ψ k = e iLk 1 t e ik 2 y . u ( t, y ) = c k ψ k , k ∈ Z 2 8 k = (0 , 0) L, Unknowns > > k = (0 , k 2 ) , k 2 6 = 0 b k , < x k = ✓ ◆ a k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > b k : F def def = Re ( c k ) and b k = Im ( c k ) . a k Plugging the space-time Fourier expansion into (KS) results in solving, for all k 2 Z 2 X X def i k 1 2 c k 1 c k 2 = µ k c k � k 2 i c k 1 c k 2 = 0 , = µ k c k � 2 h k k 1 + k 2 = k k 1 + k 2 = k def = ik 1 L + ν k 4 2 � k 2 where µ k = µ k 1 ,k 2 2 . X def ν k 4 2 � k 2 � � = Re ( h k ) = a k � ( k 1 L ) b k + 2 k 2 f k a k 1 b k 2 , 2 k 1 + k 2 = k X def ν k 4 2 � k 2 � � = Im ( h k ) = ( k 1 L ) a k + ( a k 1 a k 2 � b k 1 b k 2 ) . g k b k � k 2 2 k 1 + k 2 = k

  34. Letting L = 2 π p , the time-periodic solutions of period p of (KS) can be expanded using the Fourier expansion X where for k = ( k 1 , k 2 ) ∈ Z 2 , ψ k = e iLk 1 t e ik 2 y . u ( t, y ) = c k ψ k , k ∈ Z 2 8 k = (0 , 0) L, Unknowns > > k = (0 , k 2 ) , k 2 6 = 0 b k , < x k = ✓ ◆ a k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > b k : F def def = Re ( c k ) and b k = Im ( c k ) . a k Plugging the space-time Fourier expansion into (KS) results in solving, for all k 2 Z 2 X X def i k 1 2 c k 1 c k 2 = µ k c k � k 2 i c k 1 c k 2 = 0 , = µ k c k � 2 h k k 1 + k 2 = k k 1 + k 2 = k def = ik 1 L + ν k 4 2 � k 2 where µ k = µ k 1 ,k 2 2 . Functions X def ν k 4 2 � k 2 � � = Re ( h k ) = a k � ( k 1 L ) b k + 2 k 2 f k a k 1 b k 2 , 2 k 1 + k 2 = k X def ν k 4 2 � k 2 � � = Im ( h k ) = ( k 1 L ) a k + ( a k 1 a k 2 � b k 1 b k 2 ) . g k b k � k 2 2 k 1 + k 2 = k

  35. 8 k = (0 , 0) L, Unknowns > > k = (0 , k 2 ) , k 2 6 = 0 b k , < x k = ✓ ◆ a k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > b k : Defining I = { (0 , 0) } [ { k = (0 , k 2 ) | k 2 6 = 0 } [ { k = ( k 1 , k 2 ) | k 1 6 = 0 and k 2 6 = 0 } , one can identify x = { x k } k ∈ I .

  36. 8 k = (0 , 0) L, Unknowns > > k = (0 , k 2 ) , k 2 6 = 0 b k , < x k = ✓ ◆ a k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > b k : Defining I = { (0 , 0) } [ { k = (0 , k 2 ) | k 2 6 = 0 } [ { k = ( k 1 , k 2 ) | k 1 6 = 0 and k 2 6 = 0 } , X � � one can identify x = { x k } k ∈ I . Finally, let us define F = {F k } k ∈ I component-wise by 8 k = (0 , 0) η , > > k = (0 , k 2 ) , k 2 6 = 0 g k , < F k = ✓ ◆ f k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > g k :

  37. 8 k = (0 , 0) L, Unknowns > > k = (0 , k 2 ) , k 2 6 = 0 b k , < x k = ✓ ◆ a k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > b k : Defining I = { (0 , 0) } [ { k = (0 , k 2 ) | k 2 6 = 0 } [ { k = ( k 1 , k 2 ) | k 1 6 = 0 and k 2 6 = 0 } , X � � one can identify x = { x k } k ∈ I . Finally, let us define F = {F k } k ∈ I component-wise by 8 k = (0 , 0) η , > > k = (0 , k 2 ) , k 2 6 = 0 g k , < F k = ✓ ◆ f k : k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > g k : Hence, Lemma. Finding time-periodic solutions u ( t, y ) of (KS) such that η = 0 is equivalent to find x such that F ( x ) = 0.

  38. 8 k = (0 , 0) L, Unknowns > > k = (0 , k 2 ) , k 2 6 = 0 b k , < x k = ✓ ◆ a k k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > b k : Defining I = { (0 , 0) } [ { k = (0 , k 2 ) | k 2 6 = 0 } [ { k = ( k 1 , k 2 ) | k 1 6 = 0 and k 2 6 = 0 } , X � � one can identify x = { x k } k ∈ I . Finally, let us define F = {F k } k ∈ I component-wise by 8 k = (0 , 0) η , > > k = (0 , k 2 ) , k 2 6 = 0 g k , < F k = ✓ ◆ f k : k = ( k 1 , k 2 ) , k 1 6 = 0 and k 2 6 = 0 . , > > g k : Hence, Lemma. Finding time-periodic solutions u ( t, y ) of (KS) such that η = 0 is equivalent to find x such that F ( x ) = 0. To solve rigorously in a Banach space

  39. The Banach space j �   Define the one-dimensional weights ω s k by ( 1 , if k = 0 ω s def = k | k | s , if k 6 = 0 . Using the 1-d weights, define the 2-dimensional weights, given k = ( k 1 , k 2 ) 2 Z 2 , = ω s 1 k 1 ω s 2 ω s def k 2 . k They are used to define the norm ω s k | x k | ∞ , k x k s = sup k ∈ I where | x k | ∞ is the sup norm of the vector x k , which is one or two dimensional, depending on k . Define the Banach space X s = { x | k x k s < 1 } , consisting of sequences with algebraically decaying tails according to the rate s .

  40. The Banach space j �   Define the one-dimensional weights ω s k by ( 1 , if k = 0 ω s def = k | k | s , if k 6 = 0 . Using the 1-d weights, define the 2-dimensional weights, given k = ( k 1 , k 2 ) 2 Z 2 , = ω s 1 k 1 ω s 2 ω s def k 2 . k They are used to define the norm ω s k | x k | ∞ , k x k s = sup k ∈ I where | x k | ∞ is the sup norm of the vector x k , which is one or two dimensional, depending on k . Define the Banach space Banach algebra under discrete X s = { x | k x k s < 1 } , convolution consisting of sequences with algebraically decaying tails according to the rate s .

  41. For sake of simplicity of the presentation, for k = ( k 1 , k 2 ) with k 1 6 = 0 or k 2 6 = 0, let ✓ ◆ ν k 4 2 � k 2 � k 1 L def def = ν k 4 2 � k 2 2 R k ( ν , L ) = and R 0 ,k 2 ( ν , L ) 2 , ν k 4 2 � k 2 k 1 L 2 ✓ ◆ 2 a k 1 b k 2 X def N k ( x ) = � a k 1 a k 2 + b k 1 b k 2 k 1 + k 2 = k so that one has that F k ( x, ν ) = R k ( ν , L ) x k + k 2 N k ( x ) . Z

  42. For sake of simplicity of the presentation, for k = ( k 1 , k 2 ) with k 1 6 = 0 or k 2 6 = 0, let ✓ ◆ ν k 4 2 � k 2 � k 1 L def def = ν k 4 2 � k 2 2 R k ( ν , L ) = and R 0 ,k 2 ( ν , L ) 2 , ν k 4 2 � k 2 k 1 L 2 ✓ ◆ 2 a k 1 b k 2 X def N k ( x ) = � a k 1 a k 2 + b k 1 b k 2 k 1 + k 2 = k so that one has that F k ( x, ν ) = R k ( ν , L ) x k + k 2 N k ( x ) . Z

  43. For sake of simplicity of the presentation, for k = ( k 1 , k 2 ) with k 1 6 = 0 or k 2 6 = 0, let ✓ ◆ ν k 4 2 � k 2 � k 1 L def def = ν k 4 2 � k 2 2 R k ( ν , L ) = and R 0 ,k 2 ( ν , L ) 2 , ν k 4 2 � k 2 k 1 L 2 ✓ ◆ 2 a k 1 b k 2 X def N k ( x ) = � a k 1 a k 2 + b k 1 b k 2 k 1 + k 2 = k so that one has that F k ( x, ν ) = R k ( ν , L ) x k + k 2 N k ( x ) . Z Lemma. (Bootstrap) Consider a fixed decay rate s > (1 , 1) and assume the existence of M > (0 , 0) such that R k ( ν , L ) is invertible for all | k | > M . If there exists x ∈ X s such that F ( x ) = 0, then x ∈ X s 0 , for all s 0 > (1 , 1).

  44. For sake of simplicity of the presentation, for k = ( k 1 , k 2 ) with k 1 6 = 0 or k 2 6 = 0, let ✓ ◆ ν k 4 2 � k 2 � k 1 L def def = ν k 4 2 � k 2 2 R k ( ν , L ) = and R 0 ,k 2 ( ν , L ) 2 , ν k 4 2 � k 2 k 1 L 2 ✓ ◆ 2 a k 1 b k 2 X def N k ( x ) = � a k 1 a k 2 + b k 1 b k 2 k 1 + k 2 = k so that one has that F k ( x, ν ) = R k ( ν , L ) x k + k 2 N k ( x ) . Z Lemma. (Bootstrap) Consider a fixed decay rate s > (1 , 1) and assume the existence of M > (0 , 0) such that R k ( ν , L ) is invertible for all | k | > M . If there exists x ∈ X s such that F ( x ) = 0, then x ∈ X s 0 , for all s 0 > (1 , 1). Hence, we focus our attention on looking for zeros of F within a Banach space with a fixed decay rate s>(1,1).

  45. def = { k j 2 Z | | k j | < m j } . Given m = ( m 1 , m 2 ), define F m = F m 1 ⇥ F m 2 , where F m j def Consider a Galerkin projection of F of dimension n = n ( m ) = 2 m 1 m 2 � 2 m 1 � m 2 + 2 } k ∈ F m , where F ( m ) : R n ! R n , is given component-wise by = {F ( m ) def given by F ( m ) k F ( m ) def = F k ( x F m , 0 I m ) , ( x F m ) k 2 F m . k

  46. def = { k j 2 Z | | k j | < m j } . Given m = ( m 1 , m 2 ), define F m = F m 1 ⇥ F m 2 , where F m j def Consider a Galerkin projection of F of dimension n = n ( m ) = 2 m 1 m 2 � 2 m 1 � m 2 + 2 } k ∈ F m , where F ( m ) : R n ! R n , is given component-wise by = {F ( m ) def given by F ( m ) k F ( m ) def = F k ( x F m , 0 I m ) , ( x F m ) k 2 F m . k def x F m such that F ( m ) (ˆ x F m , 0 I m ) 2 X s . Assume that the Consider ˆ x F m ) ⇡ 0. Let ˆ = (ˆ x Jacobian matrix D F ( m ) (ˆ x F m ) is non-singular and let A m an approximation for its inverse.

  47. def = { k j 2 Z | | k j | < m j } . Given m = ( m 1 , m 2 ), define F m = F m 1 ⇥ F m 2 , where F m j def Consider a Galerkin projection of F of dimension n = n ( m ) = 2 m 1 m 2 � 2 m 1 � m 2 + 2 } k ∈ F m , where F ( m ) : R n ! R n , is given component-wise by = {F ( m ) def given by F ( m ) k F ( m ) def = F k ( x F m , 0 I m ) , ( x F m ) k 2 F m . k def x F m such that F ( m ) (ˆ x F m , 0 I m ) 2 X s . Assume that the Consider ˆ x F m ) ⇡ 0. Let ˆ = (ˆ x Jacobian matrix D F ( m ) (ˆ x F m ) is non-singular and let A m an approximation for its inverse. Define the action of the linear operator A on x = { x k } k ∈ I component-wise by 8 h i A m ( x F m ) if k 2 F m k , < h i def A ( x ) = R k ( ν , ˆ k L ) − 1 x k , if k 62 F m . : def T ( x ) = x � A F ( x ) .

  48. def = { k j 2 Z | | k j | < m j } . Given m = ( m 1 , m 2 ), define F m = F m 1 ⇥ F m 2 , where F m j def Consider a Galerkin projection of F of dimension n = n ( m ) = 2 m 1 m 2 � 2 m 1 � m 2 + 2 } k ∈ F m , where F ( m ) : R n ! R n , is given component-wise by = {F ( m ) def given by F ( m ) k F ( m ) def = F k ( x F m , 0 I m ) , ( x F m ) k 2 F m . k def x F m such that F ( m ) (ˆ x F m , 0 I m ) 2 X s . Assume that the Consider ˆ x F m ) ⇡ 0. Let ˆ = (ˆ x Jacobian matrix D F ( m ) (ˆ x F m ) is non-singular and let A m an approximation for its inverse. Define the action of the linear operator A on x = { x k } k ∈ I component-wise by 8 h i A m ( x F m ) if k 2 F m k , < h i def A ( x ) = R k ( ν , ˆ k L ) − 1 x k , if k 62 F m . : def T ( x ) = x � A F ( x ) . (Newton-like operator)

  49. def = { k j 2 Z | | k j | < m j } . Given m = ( m 1 , m 2 ), define F m = F m 1 ⇥ F m 2 , where F m j def Consider a Galerkin projection of F of dimension n = n ( m ) = 2 m 1 m 2 � 2 m 1 � m 2 + 2 } k ∈ F m , where F ( m ) : R n ! R n , is given component-wise by = {F ( m ) def given by F ( m ) k F ( m ) def = F k ( x F m , 0 I m ) , ( x F m ) k 2 F m . k def x F m such that F ( m ) (ˆ x F m , 0 I m ) 2 X s . Assume that the Consider ˆ x F m ) ⇡ 0. Let ˆ = (ˆ x Jacobian matrix D F ( m ) (ˆ x F m ) is non-singular and let A m an approximation for its inverse. Define the action of the linear operator A on x = { x k } k ∈ I component-wise by 8 h i A m ( x F m ) if k 2 F m k , < h i def A ( x ) = R k ( ν , ˆ k L ) − 1 x k , if k 62 F m . : def T ( x ) = x � A F ( x ) . (Newton-like operator) F � Lemma. Consider a Galerkin projection dimension m = ( m 1 , m 2 ) and let s = ( s 1 , s 2 ) > (1 , 1) a decay rate. The solutions of F = 0 are in one to one correspondence with the fixed points of T . Also, one has that T : X s ! X s .

  50. The rigorous continuation method is based on the notion of the radii polynomials, which provide a numerically e ffi cient way to verify that the operator T is a contraction on a small x in X s . closed ball B (ˆ x, r ) centered at the numerical approximation ˆ

  51. The rigorous continuation method is based on the notion of the radii polynomials, which provide a numerically e ffi cient way to verify that the operator T is a contraction on a small x in X s . closed ball B (ˆ x, r ) centered at the numerical approximation ˆ Ingredients to construct the radii polynomials • Convolution estimates • Interval arithmetic • Fast Fourier transform

  52. The rigorous continuation method is based on the notion of the radii polynomials, which provide a numerically e ffi cient way to verify that the operator T is a contraction on a small x in X s . closed ball B (ˆ x, r ) centered at the numerical approximation ˆ Ingredients to construct the radii polynomials • Convolution estimates • Interval arithmetic • Fast Fourier transform The closed ball of radius r in X s , centered at the origin, is given by � d ( k )  � r , r Y def B ( r ) = , ω s ω s k k k ∈ I where d ( k ) = 1 if k = (0 , k 2 ) and d ( k ) = 2 otherwise. The closed ball of radius r centered at ˆ x is then def B (ˆ x, r ) = ˆ x + B ( r ) .

  53. Consider now bounds Y k and Z k for all k 2 I , such that � � ⇥ ⇤ T (ˆ x ) � ˆ x �  Y k , � � k � and � � ⇥ ⇤ sup DT (ˆ x + x 1 ) x 2 �  Z k ( r ) . � � k � x 1 ,x 2 ∈ B ( r ) def If there exists an r > 0 such that k Y + Z k s < r , with Y = { Y k } k ∈ I and Lemma. def Z = { Z k } k ∈ I , then T is a contraction mapping on B (ˆ x, r ) with contraction constant at most k Y + Z k s /r < 1. Furthermore, there is a unique ˜ x 2 B (ˆ x, r ) such that F (˜ x ) = 0.

  54. Consider now bounds Y k and Z k for all k 2 I , such that � � ⇥ ⇤ T (ˆ x ) � ˆ x �  Y k , � � k � and � � ⇥ ⇤ sup DT (ˆ x + x 1 ) x 2 �  Z k ( r ) . � � k � x 1 ,x 2 ∈ B ( r ) def If there exists an r > 0 such that k Y + Z k s < r , with Y = { Y k } k ∈ I and Lemma. def Z = { Z k } k ∈ I , then T is a contraction mapping on B (ˆ x, r ) with contraction constant at most k Y + Z k s /r < 1. Furthermore, there is a unique ˜ x 2 B (ˆ x, r ) such that F (˜ x ) = 0. Define the finite radii polynomials { p k ( r ) } k ∈ F M by = Y k + Z k ( r ) � r def I d ( k ) , p k ( r ) ! s k and the tail radii polynomial by = ˜ def p M ( r ) ˜ Z M ( r ) � 1 .

  55. Consider now bounds Y k and Z k for all k 2 I , such that � � ⇥ ⇤ T (ˆ x ) � ˆ x �  Y k , � � k � and � � ⇥ ⇤ sup DT (ˆ x + x 1 ) x 2 �  Z k ( r ) . � � k � x 1 ,x 2 ∈ B ( r ) def If there exists an r > 0 such that k Y + Z k s < r , with Y = { Y k } k ∈ I and Lemma. def Z = { Z k } k ∈ I , then T is a contraction mapping on B (ˆ x, r ) with contraction constant at most k Y + Z k s /r < 1. Furthermore, there is a unique ˜ x 2 B (ˆ x, r ) such that F (˜ x ) = 0. Define the finite radii polynomials { p k ( r ) } k ∈ F M by = Y k + Z k ( r ) � r def I d ( k ) , p k ( r ) ! s k and the tail radii polynomial by asymptotic bound s for Z in X k = ˜ def p M ( r ) ˜ Z M ( r ) � 1 .

  56. Consider now bounds Y k and Z k for all k 2 I , such that � � ⇥ ⇤ T (ˆ x ) � ˆ x �  Y k , � � k � and � � ⇥ ⇤ sup DT (ˆ x + x 1 ) x 2 �  Z k ( r ) . � � k � x 1 ,x 2 ∈ B ( r ) def If there exists an r > 0 such that k Y + Z k s < r , with Y = { Y k } k ∈ I and Lemma. def Z = { Z k } k ∈ I , then T is a contraction mapping on B (ˆ x, r ) with contraction constant at most k Y + Z k s /r < 1. Furthermore, there is a unique ˜ x 2 B (ˆ x, r ) such that F (˜ x ) = 0. Define the finite radii polynomials { p k ( r ) } k ∈ F M by = Y k + Z k ( r ) � r def I d ( k ) , p k ( r ) ! s k and the tail radii polynomial by asymptotic bound s for Z in X k = ˜ def p M ( r ) ˜ Z M ( r ) � 1 . Lemma. If there exists r > 0 such that p k ( r ) < 0 for all k 2 F M and ˜ p M ( r ) < 0, then there is a unique ˜ x 2 B (ˆ x, r ) such that F (˜ x ) = 0.

  57. Results Kuramoto- Sivashinski equation ( u t = − ν u yyyy − u yy + 2 uu y (KS) u ( t, y ) = u ( t, y + 2 π ) , u ( t, − y ) = − u ( t, y )

  58. Results Kuramoto- Sivashinski equation ( u t = − ν u yyyy − u yy + 2 uu y (KS) u ( t, y ) = u ( t, y + 2 π ) , u ( t, − y ) = − u ( t, y ) m = (77 , 15), M = (229 , 43), s = ( 3 2 , 3 2 ) # of time Fourier modes decay rates # of space Fourier modes

  59. Results Kuramoto- Sivashinski equation ( u t = − ν u yyyy − u yy + 2 uu y (KS) u ( t, y ) = u ( t, y + 2 π ) , u ( t, − y ) = − u ( t, y ) m = (77 , 15), M = (229 , 43), s = ( 3 2 , 3 2 ) # of time Fourier modes decay rates # of space Fourier modes ν ∈ { . 127 , . 12707 , . 12715 , . 12725 , . 12739 , . 12756 , . 12777 }

  60. Results Kuramoto- Sivashinski equation ( u t = − ν u yyyy − u yy + 2 uu y (KS) u ( t, y ) = u ( t, y + 2 π ) , u ( t, − y ) = − u ( t, y ) m = (77 , 15), M = (229 , 43), s = ( 3 2 , 3 2 ) # of time Fourier modes decay rates # of space Fourier modes Y ν ∈ { . 127 , . 12707 , . 12715 , . 12725 , . 12739 , . 12756 , . 12777 } ∈ I # d ( k ) " − 3 × 10 − 4 , 3 × 10 − 4 Y ⊂ X ( 3 2 , 3 2 ) x ∈ B (ˆ ˜ x, r ) = ˆ x + k 3 / 2 k 3 / 2 k 3 / 2 k 3 / 2 1 2 1 2 k ∈ I

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend