renormalisation flow in a yukawa model with quadratic
play

Renormalisation flow in a Yukawa model with quadratic symmetry - PowerPoint PPT Presentation

Renormalisation flow in a Yukawa model with quadratic symmetry breaking Istv an Kaposv ari, Antal Jakov ac and Andr as Patk os Institute of Physics, E otv os University, Budapest Outline: The model, its symmetries and


  1. Renormalisation flow in a Yukawa model with quadratic symmetry breaking Istv´ an Kaposv´ ari, Antal Jakov´ ac and Andr´ as Patk´ os Institute of Physics, E¨ otv¨ os University, Budapest Outline: • The model, its symmetries and spectra (Reminder of the Cakovec-2016 talk) • Spectra in Local Potential Approximation ( LPA ) interpretation through RG-flow structure • Effect of the wavefunction renormalisation ( LPA ′ ): adiabatic deformation of the LPA -flow • Conclusions

  2. The model Complex scalar and single Dirac-fermion with chiral Yukawa-interaction Φ = 1 ψ R/L = 1 √ 2(Φ 1 ( x ) + i Φ 2 ( x )) , 2(1 ± γ 5 ) ψ. The symmetric part of the scale dependent action k < Λ : � ψ R ψ L Φ ∗ + ¯ Γ ( k ) Z ψ ¯ ∂ψ + Z φ ∂ m Φ ∗ ∂ m Φ + U k (Φ ∗ Φ) + h k ( ¯ d 4 x � � SY M = ψ / ψ L ψ R Φ) . Symmetries: ψ → e − iα ¯ ¯ ψ → e iα ψ, ψ Φ → Φ , U(1) , ψ → ¯ ¯ ψ → e iγ 5 Θ ψ, ψe iγ 5 Θ , Φ → e − 2 i Θ Φ , U A (1) . U A (1) : fermion mass-term can be generated only via non-zero Φ -condensate.

  3. Quadratic explicit breaking of U A (1) � Γ ( k ) [Φ( − p )Φ( p ) + Φ ∗ ( − p )Φ ∗ ( p )] . ESB = Π k p Symmetry: U (1) × U A (1) → U (1) × Z (2) Π k : � ΦΦ + Φ ∗ Φ ∗ � k � = 0 Superposition of oppositely charged condensates Spontaneous breaking: � 2 Φ ∗ Φ − v 2 6 (Φ ∗ Φ) 2 → U ( k ) � U ( k ) k Φ ∗ Φ + λ k SSB = λ k INV = M 2 k 6 2 0 = u k Field expectation: Φ 0 = Φ ∗ 2 → equations of the condensate: √ � � k − 2 | Π k | + λ k u k M 2 6 u 2 2 = 0 , ← INV √ k � � λ k u k 6 ( u 2 k − v 2 k ) − 2 | Π k | 2 = 0 , ← SB √

  4. Infrared spectrum of the scalar sector ( k = 0 ) Denominator of the bosonic propagators: INV ( u 0 = 0 , ψ = 0 ) B ) = ( q 2 + M 2 0 ) 2 − 4 | Π 0 | 2 ∆( Γ (2) m 2 1 = M 2 m 2 2 = M 2 → 0 − 2 | Π 0 | , 0 + 2 | Π 0 | SB ( u 0 � = 0 , ψ = 0 ) � � q 2 + λ 0 ( q 2 + 4 | Π 0 | ) ∆( Γ (2) 3 v 2 B ) = 0 + 4 | Π 0 | 1 = λ 0 0 + 4 | Π 0 | = λ 0 → m 2 3 v 2 3 u 2 m 2 0 , 2 = 4 | Π 0 | . Separation of the symmetric and broken symmetry regions (critical surface): M 2 → m 2 1 = 0 , m 2 0 = 2 | Π 0 | 2 = 4 | Π 0 | The masses m 2 1 and m 2 2 go continuously through the critical surface. The second mass corresponds in the SB-phase to the pseudo-Goldstone field from the U A (1) breakdown. Fermion mass: u 0 m ψ = h k =0 √ 2

  5. Strategy for solving RGE Toy model of top-Higgs system with enlarged scalar sector: Is it possible to identify the PGB with the Higgs ( m G = m 2 = m Higgs )? How large can be made m hb /m G ? How does influence Π Λ the m hb /m G ratio? Strategy: Tune h Λ , M 2 Λ with fixed Π Λ /M 2 Λ and λ Λ to get � 2 m 2 √ 2 m top = 173 8Π 0 � 125 Higgs h 0 = 246 , = = . h 2 0 u 2 m 2 u SM 173 top SM Read out m 2 m 2 = 3 h 2 Higgs 0 G m 2 m 2 2 λ 0 top hb

  6. Wetterich RGE’s for the effective action I. symmetric phase Z φ q 2 R + M 2 1 + 2 λ � � ∂ t M 2 = − 2 h 2 ˆ ˆ ∂ t ∂ t , Z 2 ψ q 2 ∆( q 2 3 R ) q q R R + M 2 ) 2 + 16 | Π | 2 − λ 2 5( Z φ q 2 � 1 � ˆ ˆ ∂ t λ = 6 h 4 ∂ t ∂ t , Z 4 ψ q 4 ∆ 2 ( q 2 3 R ) q q R 1 � ˆ ∂ t h = h 3 Π ∂ t R ) , Z 2 ψ q 2 R ∆( q 2 q ∂ t Π = − λ Π � 1 ˆ ∂ t R ) . ∆( q 2 3 q Note: Evolution of the Yukawa coupling is very slow with diminishing Π Λ /M 2 r Λ

  7. Wetterich RGE’s for the effective action II. broken symmetry phase 4 Z φ q 2 R + m 2 hb + m 2 3 � 1 + λ � G = − 2 h 2 ˆ ˆ 4 ∂ t m 2 G ∂ t ∂ t , Z 2 ψ q 2 R + m 2 ∆( q 2 6 R ) q q ψ − Z 2 ψ q 2 R + m 2 � hb = 2 h 2 ˆ ψ ∂ t m 2 ∂ t ( Z 2 ψ q 2 R + m 2 ψ ) 2 q G − m 2 + λ 1 � � 2 � � ˆ 4 Z φ q 2 R + 7 m 2 hb + 3 m 2 4 Z φ q 2 R + m 2 hb + m 2 hb � ∂ t , G ∆( q 2 ∆( q 2 6 R ) R ) q − Z 2 ψ q 2 R + m 2 ∂ t h = − h 3 � ψ G )ˆ 2 ( m 2 hb − m 2 ∂ t ( Z 2 ψ q 2 R + m 2 ψ ) 2 ∆( q 2 R ) q + h 3 m 2 1 � 3 1 � � ˆ hb ∂ t hb ) 2 − . Z 2 ψ q 2 R + m 2 ( Z φ q 2 R + m 2 ( Z φ q 2 R + m 2 G ) 2 4 q ψ

  8. Wetterich RGE’s for the effective action III. broken symmetry phase ∆ nm = δ n + m ∆ ∂ t λ = ∂ F t λ + ∂ B t λ, δ Φ n δ Φ ∗ m 2 � t λ = 4 h 4 ˆ 3 ∂ F G 2 ψ [1 − 4 m 2 ψ G ψ + m 4 ψ G 2 ∂ t ψ ] , p � 2 t λ = 1 ∆ 22 ∆ − 1 � ˆ 3 ∂ B 2∆ 12 ∆ 10 + 2∆ 21 ∆ 01 + 2∆ 2 � � ∂ t 11 + ∆ 20 ∆ 02 ∆ 2 2 p � − 6∆ 2 10 ∆ 2 + 2 ∆ 20 ∆ 2 01 + ∆ 02 ∆ 2 01 � � 10 + 4∆ 11 ∆ 10 ∆ 01 . ∆ 3 ∆ 4 1 1 1 G G ( q 2 G hb ( q 2 R ) = , R ) = , G ψ = , Z Φ q 2 R + m 2 Z Φ q 2 R + m 2 Z 2 ψ q 2 R + m 2 G hb ψ ∆ = G G G hb

  9. Phase structure and spectra in LPA, ( η ψ = η φ = 0) 0.0006 0.0005 m hb2 0.0004 Λ 2 m G 2 0.0003 Λ 2 m ψ 2 0.0002 Λ 2 0.0001 t - 10 - 8 - 6 - 4 - 2 | Π Λ | /M 2 Λ = 0 . 01 , h ≡ h Λ

  10. Scalar mass ratio vs. Π Λ /M 2 Λ m G 2 m G 2 m hb2 m hb2 0.560 ● 0.7 ● 0.555 ● ● λ = 0.5, slope: 0.007184 ● ● λ = 0.5 0.6 0.550 ▲ λ = 0.8, slope: 0.0010221 ▲ λ = 2 ● ● ■ λ = 0.94002 ■ λ = 5 0.545 ● 0.5 ◆ λ = 1, slope: - 0.0002739 ◆ λ = 8 ▲ ▲ ▲ ▲ 0.540 ★ λ = 1.4, slope: - 0.000963 ★ λ = 13 ■ ■ ■ ◆ ◆ ◆ 0.4 0.535 ★ ■ ★ ★ ★ ◆ ● ▲ ■ ▲ ● ★ ◆ ■ ★ 0.530 Π Λ Π Λ M Λ 2 M Λ 2 10 - 15 10 - 10 10 - 5 10 - 8 10 - 6 10 - 4 10 - 2 h Λ ≈ 0 . 7 h Λ ≈ 3 Important observation: Scalar mass ratio apparently approaches a value insensitive to Π Λ /M 2 Λ Conjecture: λ ( k = 0) for | Π Λ | /M 2 Λ → 0 is a unique function of h Λ What is behind this systematics observed from the numerical solution of the RGE’s?

  11. The RG-flow in the symmetric phase RGE’s of dimensionless couplings 1 + M 2 ∂ t Π r + 2Π r = 4 λ r Π r v d r r ) 2 , r ) 2 − 4Π 2 ((1 + M 2 3 r ) 2 + 4Π 2 (1 + M 2 r v d − 4 λ r v d r ∂ t M 2 r + 2 M 2 r = 4 h 2 r ) 2 , r ) 2 − 4Π 2 ((1 + M 2 3 4 λ 2 r v d (1 + M 2 r ) r ) 2 + 52Π 2 ∂ t λ r + (4 − d ) λ r = − 24 h 4 5(1 + M 2 � � r v d + , r ) 2 − 4Π 2 r 3((1 + M 2 r ) 3 2Π r h 3 2(1 + M 2 � � ∂ t h r + 1 r v d r ) 2(4 − d ) h r = − + 1 . r ) 2 − 4Π 2 r ) 2 − 4Π 2 (1 + M 2 (1 + M 2 r r Fixed point solution in d = 4 : � � M ∗ 2 � λ ∗ 2 ≈ 18 2 r,UV UV v 4 = (32 π 2 ) − 1 . Π ∗ 5 , ≈ 2 v 4 1 − , r,UV = 0 , h 4 h 2 5 UV UV With h Λ = 173 / 246 it suggests λ ∗ UV ≈ 0 . 94 . Compare with λ Λ belonging to the limiting m 2 G /m 2 hb ratio!

  12. The RG-flow in the symmetric phase 1.4 1.2 1.0 ◆ 0.8 λ 0.6 0.4 0.2 0.0 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 M r2 Two classes of trajectories: i) running into Landau-singularity, ii) running into instability separated by the renormalized trajectory ending in the fixed point. ∆ t needed for the evolution in the broken phase is independent of Π Λ . The smaller is Π Λ the longer is the evolution along a flow-line in the symmetric phase.

  13. The RG-flow in the symmetric phase 1.5 1.0 λ 0.5 0.0 10 20 30 40 50 60 log  M 2 Π  Fixed λ Λ , M 2 Λ / Π Λ → ∞ selects the renormalized trajectory Predicts(!) m 2 G /m 2 � 5 / 18 × m 2 G /m 2 hb ≈ 1 . 5 ψ (= 0 . 42 compare to figure!!) Is this picture robust enough when one improves solutions of the RGE’s?

  14. Effect of wavefunction renormalisation ( LPA ′ ) 1 + M 2 ∂ t Π r + (2 − η φ )Π r = 4 λ r Π r v 4 1 − η φ � � r , r ) 2 − 4Π 2 ((1 + M 2 r ) 2 3 6 r ) 2 + 4Π 2 (1 + M 2 1 − η ψ − 4 λ r v 4 1 − η φ � � � � ∂ t M 2 r + (2 − η φ ) M 2 r = 4 h 2 r r v 4 , r ) 2 − 4Π 2 ((1 + M 2 r ) 2 5 3 6 4 λ 2 r v d (1 + M 2 1 − η ψ r ) � � ∂ t λ r − 2 η φ λ r = − 24 h 4 r v 4 + r ) 3 × r ) 2 − 4Π 2 3((1 + M 2 5 1 − η φ r ) 2 + 52Π 2 � � � 5(1 + M 2 � × , r 6 4Π r h 4 2(1 + M 2 r v 4 � r ) 1 − η φ + 1 − η ψ � � � ∂ t h 2 r − ( η φ +2 η ψ ) h 2 r = − . r ) 2 − 4Π 2 r ) 2 − 4Π 2 (1 + M 2 (1 + M 2 6 5 r r Algebraic equations of the anomalous dimensions: r ) 2 + 4Π 2 (1 + M 2 1 − η φ � � η ψ = h 2 r η φ = h 2 r v 4 , r v 4 (4 − η ψ ) . r ) 2 − 4Π 2 ((1 + M 2 r ) 2 5

  15. Slow (logarithmic) variation of the Yukawa-coupling h h 2 � � r ( t 0 ) 2 3 h 2 r ( t ) = r ( t 0 ) C ( t − t 0 ) , C ≈ v 4 4 + < 1 + M ∗ 2 1 − 2 h 2 16 π 2 rUV 3 2.0 2 1.5 1 1.0 λ λ 0 0.5 - 1 0.0 - 0.002 0.000 0.002 0.004 0.006 0.008 0.000 0.001 0.002 0.003 0.004 0.005 h r ( t = −∞ ) = 0 . 7 2 2 M r M r Initial data ( h r Λ , Π r Λ ) labels the points in the plane. ”Neutral” flow-line separates regions of RG-trajectories ending with instability and RG-trajectories ending with Landau-singularity LPA ′ -flow → adiabatic overlay of LPA flow patterns belonging to slowly varying h r ( t )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend