chiral magnetic effect
play

Chiral Magnetic Effect Kenji Fukushima (Yukawa Institute for - PowerPoint PPT Presentation

Chiral Magnetic Effect Kenji Fukushima (Yukawa Institute for Theoretical Physics) July 24 2010@Yukawa 1 Strong q Angle, Strong CP Problem and Heavy-Ion Collisions July 24 2010@Yukawa 2 P and CP Violation in the YM Theory Gauge Actions P


  1. Chiral Magnetic Effect Kenji Fukushima (Yukawa Institute for Theoretical Physics) July 24 2010@Yukawa 1

  2. Strong q Angle, Strong CP Problem and Heavy-Ion Collisions July 24 2010@Yukawa 2

  3. P and CP Violation in the YM Theory Gauge Actions □ P - and CP - even ( T -even) terms  = 2 F 0 i F 0 i  F ij F ij F  F Even w.r.t. spatial and temporal indices □ P - and CP - odd ( T -odd) terms  = 2 F 01 F F   23  2 F 02 F 31  2 F 03 F 12 F Odd w.r.t. spatial and temporal indices Parallel E and B  = 2 E ⋅ B E B F   F vector axial vector July 24 2010@Yukawa 3

  4. Terminology Topological Charge (Pontryagin Index) 1 4 x F  a  2 ∫ d a Q = F  32  a = 1  a 2    F  F  1 a  a =∂  K  2 F  F  32  2     A  c  1 a ∂  A  a  1 abc A  a A  b A  K  = 3  16  July 24 2010@Yukawa 4

  5. Terminology Chern-Simons Number ijk  A i c  1 a  1 3 x  abc A i a A j b A k = ∫ d 2 ∫ d 3 x K 0 = a ∂ j A k 3  16  4 x ∂ 0 K 0 −∂ i K i = ∫ dt d 3 x K 0 = t =∞− t =−∞ Q = ∫ d dt ∫ d July 24 2010@Yukawa 5

  6. q -Vacuum and Strong CP Problem Topological Structure and q -Vacuum Manton Faddeev Jackiw-Rebbi ∣  〉 = ∑ i  ∣  〉 e  (Bloch state) Strong CP Problem Spin 〈 ∣ 〉 S QCD = − 1 1    2 tr F    2 tr F  F F EDM 16  2 g + 2  ∣ d n ∣~ e m q / m N - No CP breaking (Why?) − 11 ∣∣ 0.7 × 10 July 24 2010@Yukawa 6

  7. Finite- q Hadronic World q can be eliminated by U(1) A rotation One solution to the strong CP problem is the presence of massless quarks (almost excluded...) Effect of strong q -angle to hadron physics i  U U  e Scalar meson i  5  ~ cos  0 sin  ~     e Pseudo-scalar meson i  5  i  5 ~ 0 cos  sin   0 ~  i  5     e h 0 condensates in addition to the chiral s condensate July 24 2010@Yukawa 7

  8. Possibility for Finite h Condensate If U(1) A symmetry is NOT broken s and h are degenerate ( h may have a chance as much as the s condensate develops) U(1) A is broken but can be “effectively” restored U(1) A breaking effective interaction is induced by the topological susceptibility Veneziano-Di Vecchia Susceptibility drops off at high temperature T ~ T c 2   exp [ −  ] n  T =  2  2 N c  N f 2 8  2 / g − 5 e − 8  2  2 T 2  3 g Gross-Pisarski-Yaffe Lattice Simulation Alles et al (1996) July 24 2010@Yukawa 8

  9. Relativistic Heavy-Ion Collisions Kharzeev Finite- q Pisarski Tytgat Voloshin Baym Heavy-Ion (nucleus) Quark-Gluon Plasma Shuryak Au, Pb, Cu, ... Direct photon measurement  s NN = 200GeV , 62GeV , ... 0 , h ' etc) (not from p 12 K ~ GeV → Initial T ~ 4×10 c.f. T c ~ QCD ~ 0.3fm July 24 2010@Yukawa 9

  10. Topological Contents in the QCD Vacuum and the Real-time Fluctuations July 24 2010@Yukawa 10

  11. Lattice Simulation Topological Charge Distribution at T =0 This is not a function of “Real-Time” but of the simulation step. Derek's Visual QCD July 24 2010@Yukawa 11

  12. Is the high-T QCD Vacuum Topologically Trivial? Yes … in terms of Instantons (Euclidean) Instantons are exponentially suppressed at high T . 2   exp [ −  ] n  T =  2  2 N c  N f 2 8  2 / g − 5 e − 8  2  2 T 2  3 g No … in terms of Sphalerons (Minkowskian) Sphalerons are parametrically enhanced at high T . 5 T 4  ~  s QCD sphalerons are abundant in hot and dense matter created in the relativistic heavy-ion collisions Arnold-McLerran (1987) July 24 2010@Yukawa 12

  13. Topological Rate in Real- and Imaginary-Time Pendulum (Arnold-McLerran) Chern-Simons number x  t / 2  Topological charge n = 1  2  ∫ 0 d  ˙ x d   x  1 2  i   Finite- T Euclidean Action S E = ∫ 0 x 2 ˙ 2  ˙ Topological Susceptibility (Diffusion Rate) A  t = 〈 T  〉  2 x  t − x  0  2  2 2 Real-time (classical approx.) A  t ≃ t t 2 = v 2  2  4  4  2 〉≃ 2exp  − 2  2 /  cos  Imaginary-time A − i =〈 n July 24 2010@Yukawa 13

  14. Analytical Continuation Diffusion Rate at High T A  t = 〈 T  〉  O  e  2  x  t − x  0  2 /  2  2  2 m  exp  m − 1   O  e exp − i m ∣ t ∣− 1 exp − m − 1 − exp  i m ∣ t ∣− 1 1 2 /  2  = 4  2   i t   O  e 2 1 t 2 /  2   4  2 /  2  A  t =− i  O  e Instantons (Euclidean windings) are suppressed at high T but communications in real time are not and dominated by the contribution from the zero-winding sector. July 24 2010@Yukawa 14

  15. Topological Diffusion Rate = 1 4 x 〈 q  x  q  0  q  0  q  x 〉 V ∞ ∫ d 2 lim t  ∞ lim 2 〉= 2  V t 〈 Q Random Walk at Finite T In the strong-coupling AdS/CFT by Son and Starinets (hep-th/0205051) 2 2 = g YM N  4 3 T 256  In the weak-coupling perturbation by Arnold, Son, Yaffe, Bodeker, Moore, etc 1 2 5 ln 4 = const ⋅ g YM N  T 2 g YM N July 24 2010@Yukawa 15

  16. Connection to the Heavy-Ion Collisions How to detect the topological effects? July 24 2010@Yukawa 16

  17. Non-Central Collision Before Collision (seen from above) + + Centrality is determined by N part July 24 2010@Yukawa 17

  18. Non-Central Collision After Collision + B + (Local) P and CP Violation July 24 2010@Yukawa 18

  19. Estimated Magnetic Fields Classical (Pancake) Calcs (Kharzeev-McLerran-Warringa) 2 ] eB = 1 [ MeV 14 [ Gauss ]  B ≃ 1.7 × 10 UrQMD Calculations (Skokov-Illarionev-Toneev) July 24 2010@Yukawa 19

  20. How Big? 2 → 10 18 Gauss eB ~ m p 3 ~ 10 6 × 10 Neutron Star (Magnetar) July 24 2010@Yukawa 20

  21. Chiral Magnetic Effect Classical Picture Left-handed Quark = momentum parallel to spin B Right-handed Quark = momentum parallel to spin J ≠ 0 if N 5 = N R − N L ≠ 0 Kharzeev-McLerran-Warringa (2007) Kharzeev-McLerran-Warringa July 24 2010@Yukawa 21

  22. Anomaly Relations Induced N 5 by Topological Effects 2 N f dN 5 = − g 3 x tr F   2 ∫ d  F QCD Anomaly Relation dt 8  Introduce m 5 to describe induced N 5 Induced J by the presence of N 5 and B 2  5 j = e 2 B QED Anomaly Relation 2   j = ∑ 2 B in QCD  2  5 q i 2  i = flavor Metlitski-Zhitnitsky (2005) Fukushima-Kharzeev-Warringa (2008) July 24 2010@Yukawa 22

  23. Derivation (naïve calculation) Thermodynamic Potential ( UV divergent ) f ∫ ∣ q f B ∣ dp 3 ∞ 2  [  n , s  2 T ln  1  e − n ,s  ] =− V N c ∑ 2  ∑ s =± ∑  n, s f n = 0 2 =   p 3 2 2  2 ∣ q f B ∣ n  sgn  p 3  s  5  2  n, s  m Current ( UV finite ) Only surface terms! j 3 = e ∣ eB ∣ 2 ∑  n , s [  n, s  p 3 =− n , s  p 3 =− ] 4  s, n 2 B  5  n, s s  5 = e = e ∣ eB ∣ 2 ∑ 2 2  2  s ,n July 24 2010@Yukawa 23

  24. Derivation (energy conservation) Energy Conservation (Nielsen-Ninomiya 1983) Electric field E → Energy shift (Fermi energy) Landau Levels Density of states Energy cost E B N N R L July 24 2010@Yukawa 24

  25. CME from Inhomogeneous q Space-time Dependent q -angle i  5 / 2 N f  ⋅∂ i ⋅∂/ 2 N f  5   i  5 / 2 N f   = e ⋅∂ ⋅∂  e ∂ 0 / 2 N f = 5 Schematic Picture CME ≠ 0  in-medium  No CME 〈〉≠ 0 〈 0 〉≠ 0 Kharzeev, Pisarski, = 0  vacuum  Tytgat, Krasnitz, 〈〉≠ 0 〈 0 〉= 0 Venugopalan, Voloshin, ... No CME July 24 2010@Yukawa 25

  26. Witten Effect and CME Maxwell-Chern-Simons Theory B −∂  E  j  c  ˙ E  ∇×   B − P × ∂ t =   ∇⋅ E =  c  P ⋅ B P  = ∂   E ∂  B  ∇× ∂ t = 0  ∇⋅ B = 0 Induced Electric Current j = c  ˙ E    B − P × Induced Electric Charge q = c  P ⋅ B =− c  g Witten, Wilczek July 24 2010@Yukawa 26

  27. CME from AdS/QCD Models Chiral Magnetic Current Sakai-Sugimoto Model: Rebhan et al, JHEP 0905, 084 (2009) Lifshytz-Lippert, PRD80, 066005 (2009) Sakai-Sugimoto Model & Reissner-Nordstrom BH: Yee, JHEP 0911, 085 (2009) Soft-wall AdS/QCD: Gorsky-Kopnin-Zayakin, 1003.2293 Confusion and (maybe) a Resolution S CS and Bardeen's counter terms change the CME currents? – Axial gauge fields are not dynamical ones so the counter terms should not be applied. Rubakov (2010) July 24 2010@Yukawa 27

  28. Experimental Status July 24 2010@Yukawa 28

  29. Relativistic Heavy-Ion Collisions Nucleus (Au) Collision Energy per nucleon-nucleon collision = 200GeV p 0 =100GeV, M =1GeV → g ~ 100 Same as the kinetic energy by flying mosquitoes M ~3mg, v ~10cm/s July 24 2010@Yukawa 29

  30. Experimental Observation Brookhaven National Laboratory (Gallery) STAR Detector PHENIX Detector ×~ 100M events July 24 2010@Yukawa 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend