renormalisation of the scalar energy momentum tensor with
play

Renormalisation of the scalar energy-momentum tensor with the Wilson - PowerPoint PPT Presentation

Renormalisation of the scalar energy-momentum tensor with the Wilson flow Susanne Ehret In collaboration with Francesco Capponi, Luigi Del Debbio, Masanori Hanada, Andreas J uttner, Roberto Pellegrini, Antonin Portelli, Antonio Rago,


  1. Renormalisation of the scalar energy-momentum tensor with the Wilson flow Susanne Ehret In collaboration with Francesco Capponi, Luigi Del Debbio, Masanori Hanada, Andreas J¨ uttner, Roberto Pellegrini, Antonin Portelli, Antonio Rago, Francesco Sanfilippo, Kostas Skenderis Lattice 2016 - Southampton

  2. Motivation EMT relates to β -function d D x T µµ φ ( x 1 ) ...φ ( x n ) � � � �� � ∂ = − k β k ∂ g k + n ( γ φ + d φ ) � φ ( x 1 ) ...φ ( x n ) � φ 4 -theory in 3D, m 2 0 < 0: toy model for theories with IR fixed point m 0 ✻ IR FP ✶ ✉ ❪ ✕ Gaussian FP ✲ ✉ � λ 0 � � � � � � � ✠ � η 0 1 / 15

  3. Energy-momentum tensor and Ward identity Euclidean action � 1 � � 2( ∂ µ φ ) 2 + 1 0 φ 2 + λ 0 2 m 2 4! φ 4 d D x S = Energy-momentum tensor � � 1 ∂ σ φ∂ σ φ + 1 0 φ 2 + λ 0 � 2 m 2 4! φ 4 T µρ ( x ) = ∂ µ φ∂ ρ φ − δ µρ 2 σ Translation Ward identity � δ x ,ρ P � = −� P ∂ µ T µρ ( x ) � Local operator of translation δ P δ x ,ρ P = δφ ( x ) ∂ ρ φ ( x ) 2 / 15

  4. Translation Ward identity on the lattice Lattice action � 1 ∂ µ φ ) 2 + 1 0 φ 2 + λ 0 � S = a D � ˆ 2(ˆ 2 m 2 4! φ 4 n Lattice regularisation breaks translation symmetry explicitly � � � ˆ δ x ,ρ ˆ P � = −� ˆ ∂ µ ˆ ˆ T µρ + ˆ � P R ρ Renormalised lattice TWI � T µρ ] + ˆ � � Z δ ˆ δ x ,ρ ˆ P � = −� ˆ ∂ µ [ ˆ ˆ ¯ P R ρ � Renormalised ˆ T µρ ( x ) � � [ ˆ � ˆ µρ − � ˆ T ( i ) T ( i ) T µρ ( x )] = c i µρ � i 3 / 15

  5. Renormalisation of the EMT � � m 2 2 φ 2 + 1 ∂ σ φ + λ 0 T µρ ( x ) = ˆ ˆ ∂ µ φ ˆ � ∂ σ φ ˆ ˆ 0 4! φ 4 ∂ ρ φ − δ µρ 2 σ Possible mixing: D ≤ 3, Lorentz, φ → − φ , x → − x ∂ µ φ ˆ ˆ ∂ ρ φ, φ ˆ ∂ µ ˆ ∂ ρ φ, � � ∂ σ φ ˆ ˆ φ ˆ ∂ σ ˆ ∂ µ φ ˆ ˆ ∂ µ φ, φ ˆ ∂ µ ˆ φ 2 , φ 4 , φ 6 , � � δ µρ ∂ σ φ, ∂ σ φ, ∂ µ φ σ σ Perturbative analysis shows that divergencies are ∝ φ 2 � � T µρ ] = c c 2 2 φ 2 + c ′ ∂ σ φ + c 4 [ ˆ ∂ µ φ ˆ ˆ � ∂ σ φ ˆ ˆ 4! φ 4 ∂ ρ φ + δ µρ 2 2 σ 0 − 0 . 0215 λ 0 c 2 = − m 2 a 4 / 15

  6. Wilson flow - gradient flow on the lattice Flow equation [ Monahan,Orginos 2014 ] ∂ t ϕ ( t , x ) = ˆ ∂ 2 ϕ ( t , x ) , ϕ ( t , x ) | t =0 = φ ( x ) t ✻ r ϕ ✂ ❇ ✂ ❇ ✂ ❇ ✂ ❇ ❜✉❧❦ ✂ ❇ ✬ ✩ ✂ ❇ ❏ ✂ ❇ ❏ ✂ ❇ ❜♦✉♥❞❛r② ✂ ❇ ❏ φ ❏ ✫ ✪ r ❏ ❏ ❏ ❏ ❏ √ Smoothing effect, radius r = 2 Dt 5 / 15

  7. Renormalisation of the EMT using the Wilson flow Renormalised TWI � T µρ ] + ˆ � � Z δ ˆ δ x ,ρ ˆ P � = −� ˆ ∂ µ [ ˆ ˆ ¯ � P R ρ Renormalisation condition [ Del Debbio,Patella,Rago 2013 ] Choose probe ˆ P t : function of fields at t > 0, then: Coefficients c i can be tuned such that EMT is finite ˆ ¯ R ρ → 0 Z δ � ˆ δ x ,ρ ˆ � c i � ˆ P t ˆ ∂ µ ˆ T ( i ) P t � = − µρ ( x ) � i Determine Z δ separately, Z δ = 1 System of (at least) 4 equations with 4 different operators P ( k ) t V ( k ) = − � c i M ( k , i ) i 6 / 15

  8. Phase diagram Interested in staying close to critical line, m 2 0 < 0 Lines of constant physics defined by ρ = λ 0 / m R 0.0 -0.1 -0.2 2 m 0 -0.3 ρ =1.5 ρ =3 -0.4 ρ =5 ρ =10 critical line -0.5 0.00 1.00 2.00 3.00 4.00 5.00 λ 0 7 / 15

  9. Results - c 2 ˆ ∂ µ φ ˆ c 1 ∂ ρ φ , expected: c = 2 √ c ( t ) = 6 t / L ρ = 10 L=8 3.0 L=10 L=12 L=16 L=24 2.8 L=32 2.6 c 2.4 2.2 2.0 0.30 0.40 0.50 0.60 0.70 c(t) 8 / 15

  10. Results - c 2 c 2 1 2 φ 2 δ µρ Expected from PT: c 2 / m 2 0 = 0 . 83 ρ = 10 6.0 L=8 L=10 5.0 L=12 L=16 L=24 L=32 4.0 2 c 2 / m 0 3.0 2.0 1.0 0.0 0.30 0.40 0.50 0.60 0.70 c(t) 9 / 15

  11. Results - c ′ c ′ 1 σ ˆ ∂ σ φ ˆ � ∂ σ φδ µρ 2 Expected: c ′ = − 1 ρ = 10 0.0 -1.0 -2.0 c’ -3.0 L=8 L=10 L=12 -4.0 L=16 L=24 L=32 -5.0 0.30 0.40 0.50 0.60 0.70 c(t) 10 / 15

  12. Results - c 4 c 4 1 4! φ 4 δ µρ Expected: c 4 /λ 0 = − 1 ρ = 10 -0.5 L=8 -0.6 L=10 L=12 L=16 L=24 -0.7 L=32 -0.8 c 4 / λ 0 -0.9 -1.0 -1.1 0.30 0.40 0.50 0.60 0.70 c(t) 11 / 15

  13. Continuum limit EMT 2 ˆ ∂ µ φ ˆ c 1 ∂ ρ φ ρ = 10 L=8 3.0 L=10 L=12 L=16 L=24 2.8 L=32 2.6 c 2.4 2.2 2.0 0.30 0.40 0.50 0.60 0.70 c(t) 12 / 15

  14. Continuum limit EMT c at c ( t ) = 0 . 49 along line of constant physics c(t)=0.49 2.7 2.6 2.01 c 2.5 1.99 1.97 2.4 0.0 c 2 (a/L) 2.3 2.2 MC data y=A+Bx, L=16->32 y=A+Bx, L=12->32 2.1 2 , L=12->32 y=A+Bx+Cx 2.0 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 2 (a/L) 13 / 15

  15. Continuum limit EMT Extrapolated c for continuum limit of EMT at different t Quadratic fit 2.01 c 2.00 1.99 0.36 0.42 0.48 0.54 0.6 0.66 c(t) 14 / 15

  16. Summary We studied the non-perturbative renormalisation of EMT The Wilson flow provides a new way to implement Ward identities free from contact terms We are able to define a properly renormalised EMT on lattice Find coefficients of renormalised EMT at finite a Each t gives a different definition of the EMT Reproduce correct continuum limit of EMT Next step: study scaling behaviour in IR 15 / 15

  17. Summary We studied the non-perturbative renormalisation of EMT The Wilson flow provides a new way to implement Ward identities free from contact terms We are able to define a properly renormalised EMT on lattice Find coefficients of renormalised EMT at finite a Each t gives a different definition of the EMT Reproduce correct continuum limit of EMT Next step: study scaling behaviour in IR Thank you! 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend