scalar field hadamard renormalisation
play

Scalar field Hadamard renormalisation in AdS n Carl Kent University - PowerPoint PPT Presentation

Scalar field Hadamard renormalisation in AdS n Carl Kent University of Sheffield (Supervisor: Elizabeth Winstanley) Outline 1. Scalar field theory in AdS n 2. Overview of research 3. Calculation of the vacuum polarisation 2 ren


  1. Scalar field Hadamard renormalisation in AdS n Carl Kent University of Sheffield (Supervisor: Elizabeth Winstanley)

  2. Outline 1. Scalar field theory in AdS n 2. Overview of research 3. Calculation of the ‘vacuum polarisation’ � Φ 2 � ren

  3. Scalar field theory in AdS n Geometry Anti-de Sitter space AdS n is the maximally symmetric vacuum solution to Einstein’s classical field equations with constant negative curvature. Hyperspherical coordinates Timelike Radial Polar Azimuthal 0 ≤ ρ < π − π ≤ τ ≤ π 0 ≤ θ j < π 0 ≤ θ n − 2 < 2 π 2 ( j = 1 , 2 , . . . n − 3) Metric     n − 2 i − 1 ds 2 = − a 2 sec 2 ρ  dτ 2 − dρ 2 − sin 2 ρ sin 2 θ j dθ 2  dθ 2 � �  . 1 + i  i =2 j =1

  4. Scalar field theory in AdS n Propagation Homogenous scalar field wave equation ✷ − m 2 − ξ R � � φ ( x ) = 0 Inhomogenous scalar field wave equation ✷ x − m 2 − ξ R G F ( x, x ′ ) = g − 1 � � 2 δ ( x, x ′ ) , g := | det g µν | Short-distance behaviour of G F ( x, x ′ ) as x ′ → x − iG F ( x, x ′ ) → ‘ � Φ 2 ( x ) � ’

  5. Scalar field theory in AdS n Maximal Symmetry General effect of maximal symmetry G F ( x, x ′ ) �→ G F ( s ) , s := s ( x, x ′ ) . Synge’s ‘world function’ σ := 1 2 s 2 Inhomogenous scalar field wave equation ✷ − m 2 − ξ R � � G F ( σ ) = δ ( σ ) ∀ σ < 0 Short-distance behaviour of G F ( σ ) − iG F ( σ ) → ‘ � Φ 2 � ’ as σ → 0

  6. Overview of research ✽ ✽ Φ (+) � Φ 2 � ren n , l ( x ) − → G F ( σ ) − → − → � T µν � ren Field Feynman Renormalised Renormalised modes propagator v.e.v. of the v.e.v. of the quadratic field stress-energy fluctuations tensor Analytic     � � ✽ ✽ � Φ 2 ( x ) � β � T µν ( x ) � β ren ren Renormalised Renormalised t.e.v. of the t.e.v. of the quadratic field stress-energy fluctuations tensor Numeric

  7. Calculation of � Φ 2 � ren Hadamard theorem Hadamard form of the Feynman Green’s function � � U ( σ ) σ 1 − n G H 2 + V ( σ ) ln ¯ F ( σ ) = iν ( n ) σ + W ( σ ) ∀ n > 2 (where ν ( n ) is a constant). Hadamard functions • U ( σ ), V ( σ ) and W ( σ ) are regular as σ → 0. • Expansion coefficients are obtained from recursion relations [1]. • U ( σ ), V ( σ ) are uniquely defined but W ( σ ) is not . Singularity structure � � G H U ( σ ) σ 1 − n 2 + V ( σ ) ln ¯ F , sing ( σ ) = iν ( n ) purely geometric σ , G H F , reg ( σ ) = iν ( n ) W ( σ ) , state-dependent

  8. Calculation of � Φ 2 � ren Hadamard renormalisation Given G F ( σ ) = G H F , reg ( σ ) + G H G F ( σ ) → ‘ i � Φ 2 � ’ as σ → 0 , F , sing ( σ ) and ‘ � Φ 2 � ’ = � Φ 2 � phys + ‘ � Φ 2 � unphys ’ when σ = 0 , where � Φ 2 � phys = − i lim σ → 0 G H F , reg ( σ ) = ν ( n ) lim σ → 0 W ( σ ) . Therefore � Φ 2 � phys = � Φ 2 � ren because � � � Φ 2 � ren = − i lim G F ( σ ) − G H F , sing ( σ ) σ → 0 � � �� U ( σ ) σ 1 − n 2 + V ( σ ) ln ¯ = − i lim G F ( σ ) − iν ( n ) σ σ → 0

  9. Calculation of � Φ 2 � ren Scalar field propagator on AdS n The ISFWE is a hypergeometric differential equation [2] in z ( σ ) with solution � n − 1 � � n − 1 � + µ, n − 1 − µ ; n + µ, n − 1 − µ ; n G F ( σ ) = CF 2 ; z + DF 2 ; 1 − z 2 2 2 2 where � �� 2 ( n − 1) 2 � � 1 � σ + m 2 a 2 + ξ R a 2 , z ( σ ) := − µ := • sinh , a 2 4 • C, D are constants, • F is the hypergeometric function, and G F ( σ ) = G F, reg ( σ ) + G F, sing ( σ )

  10. Calculation of � Φ 2 � ren Code structure Code was first written in Maple to generate expressions for 1. G F , sing ( σ ) as σ → 0 2. G H F , sing ( σ ) as σ → 0 Example: n = 5 as σ → 0 √ � 1 � 1 2 � − m 2 − 4 a 2 + 20 ξ 1 � G F , sing ( σ ) = i + , 32 π 2 3 a 2 1 σ σ 2 2 √ � 1 � 1 2 � − m 2 − 4 a 2 + 20 ξ 1 � F , sing ( σ ) = i G H + . 32 π 2 3 a 2 1 σ σ 2 2

  11. Calculation of � Φ 2 � ren Code structure Example: n = 6 as σ → 0 G F , sing ( σ ) � 1 � 1 i � − 1 2 m 2 − 10 a 2 + 15 ξ 1 1 = σ 2 + 16 π 3 3 a 2 σ � 1 � m 2 � − 1 � − 5 4 + 15 � − 3 + 75 2 ξ − 225 � 8 m 4 + 2 ξ 2 + 2 ξ a 2 + ln ¯ σ a 4 � 1 m 2 � 101 � + 1 720 − 5 a 2 + 8 ξ , 48 a 4 G H F , sing ( σ ) � 1 � 1 � − 1 2 m 2 − 10 a 2 + 15 ξ 1 1 i = σ 2 + 16 π 3 3 a 2 σ � 1 � m 2 � − 1 � − 5 4 + 15 � − 3 + 75 2 ξ − 225 � 8 m 4 + 2 ξ 2 + 2 ξ a 2 + ln ¯ σ a 4 � 1 m 2 + 5 � 173 288 − 25 � a 2 + 8 ξ . 48 a 4

  12. Calculation of � Φ 2 � ren Code structure 3. Subtraction of singular parts as σ → 0 Defining � � f 0 G F , sing ( σ ) − G H n := lim F , sing ( σ ) , σ → 0 � = 0 n odd, f 0 n � = 0 n even. 4. Calculation of � Φ 2 � ren Recalling � � � Φ 2 � ren = − i lim G F ( σ ) − G H F , sing ( σ ) σ → 0 and G F ( σ ) = G F , reg ( σ ) + G F , sing ( σ ) , then � Φ 2 � ren = − i lim G F , reg ( σ ) + f 0 � � . n σ → 0

  13. Calculation of � Φ 2 � ren Results Example: n = 10 1 � Φ 2 � ren = − 12288 π 5 a 8 �� � � � 1 � � µ 8 − 21 µ 6 + 987 8 µ 4 − 3229 16 µ 2 + 11025 × 2 + µ + γ − ln ¯ ψ a 256 − 25 24 µ 8 + 461 24 µ 6 − 87983 960 µ 4 + 3854941 40320 µ 2 + 288563 � ; 30720 Example: n = 11 1 µ 9 − 30 µ 7 + 273 µ 5 − 820 µ 3 + 576 µ � Φ 2 � ren = − � � ; 60480 π 5 a 9 where � ( n − 1) 2 + m 2 a 2 + ξ R a 2 . µ := 4

  14. Calculation of � Φ 2 � ren Results (for ¯ a = 1 ) 0.3 n = 2 n = 3 n = 4 0.2 n = 5 n = 6 n = 7 0.1 n = 8 � Φ 2 � ren n = 9 n = 10 0.0 n = 11 -0.1 -0.2 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 µ

  15. Scalar field Hadamard renormalisation in AdS n Conclusions • Using the Hadamard theorem, we have obtained expressions of � Φ 2 � ren analytically. • Expressions have been obtained for a massive neutral scalar field in n = 2 to n = 11 inclusive involving an arbitrary coupling ξ . • The method used is easily extended to higher n with sufficient processing power. Key references 1. D´ ecanini, Y., Folacci, A., Phys. Rev. D. 78 , 044025 (2008). 2. Allen, B., Jacobson, T., Commun. Math. Phys. 103 , 669 (1986).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend