a thin layer reduced model for shallow viscoelastic flows
play

A thin-layer reduced model for shallow viscoelastic flows Franois - PowerPoint PPT Presentation

A thin-layer reduced model for shallow viscoelastic flows Franois Bouchut 2 & Sbastien Boyaval 1 1 Univ. Paris Est , Laboratoire dhydraulique Saint-Venant (ENPC EDF R&D CETMEF), Chatou, France & INRIA , MICMAC team 2


  1. A thin-layer reduced model for shallow viscoelastic flows François Bouchut 2 & Sébastien Boyaval 1 1 Univ. Paris Est , Laboratoire d’hydraulique Saint-Venant (ENPC – EDF R&D – CETMEF), Chatou, France & INRIA , MICMAC team 2 Univ. Paris Est , LAMA (Univ. Marne-la-Vallée) & CNRS July 2013, CEMRACS, Marseille

  2. Outline Formal derivation of the mathematical model 1 Discretization of the new model 2 Numerical simulation & physical interpretation 3 F. Bouchut & S. Boyaval 2 / 36 Shallow viscoelastic fluids

  3. Upper-Convected Maxwell (UCM) model Mass and momentum equations for incompressible fluid ( velocity u ; pressure p ; Cauchy stress − p I + τ ) with non-Newtonian rheology ( τ ≇ D ( u ) ≡ ( ∇ u + ∇ u T ) / 2): div u = 0 in D t , ∂ t u + ( u · ∇ ) u = − ∇ p + div τ + f in D t , � ∂ t τ + ( u · ∇ ) τ − ( ∇ u ) τ − τ ( ∇ u ) T � λ = η p D ( u ) − τ in D t , under gravity f ≡ − g e z in time-dependent domain D t ⊂ R 2 D t = { x = ( x , z ) , x ∈ ( 0 , L ) , 0 < z − b ( x ) < h ( t , x ) } F. Bouchut & S. Boyaval 3 / 36 Shallow viscoelastic fluids

  4. Thin-layer geometry with non-folded interfaces z g n ( x ) h ( t , x ) b ( x ) x F. Bouchut & S. Boyaval 4 / 36 Shallow viscoelastic fluids

  5. A free-surface boundary value problem We supply the UCM model with initial and boundary conditions u · n = 0 , for z = b ( x ) , x ∈ ( 0 , L ) , τ n = (( τ n ) · n ) n , for z = b ( x ) , x ∈ ( 0 , L ) , ∂ t h + u x ∂ x ( b + h ) = u z , for z = b ( x ) + h ( t , x ) , x ∈ ( 0 , L ) , ( p I − τ ) · ( − ∂ x ( b + h ) , 1 ) = 0 , for z = b ( x ) + h ( t , x ) , x ∈ ( 0 , L ) , where n is the unit normal vector at the bottom inward the fluid − ∂ x b 1 n x = � n z = � 1 + ( ∂ x b ) 2 . 1 + ( ∂ x b ) 2 F. Bouchut & S. Boyaval 5 / 36 Shallow viscoelastic fluids

  6. ∂ x u x + ∂ z u z = 0 , ∂ t u x + u x ∂ x u x + u z ∂ z u x = − ∂ x p + ∂ x τ xx + ∂ z τ xz , ∂ t u z + u x ∂ x u z + u z ∂ z u z = − ∂ z p + ∂ x τ xz + ∂ z τ zz − g , ∂ t τ xx + u x ∂ x τ xx + u z ∂ z τ xx = ( 2 ∂ x u x ) τ xx + ( 2 ∂ z u x ) τ xz + η p ∂ x u x − τ xx , λ ∂ t τ zz + u x ∂ x τ zz + u z ∂ z τ zz = ( 2 ∂ x u z ) τ xz + ( 2 ∂ z u z ) τ zz + η p ∂ z u z − τ zz , λ η p ( ∂ z u x + ∂ x u z ) − τ xz 2 ∂ t τ xz + u x ∂ x τ xz + u z ∂ z τ xz = ( ∂ x u z ) τ xx + ( ∂ z u x ) τ zz + λ u z = ( ∂ x b ) u x at z = b , � � − ( ∂ x b ) τ xx + τ xz = − ∂ x b − ( ∂ x b ) τ xz + τ zz at z = b , − ∂ x ( b + h )( p − τ xx ) − τ xz = 0 at z = b + h , ∂ x ( b + h ) τ xz + ( p − τ zz ) = 0 at z = b + h , ∂ t h + u x ∂ x ( b + h ) = u z at z = b + h . F. Bouchut & S. Boyaval 6 / 36 Shallow viscoelastic fluids

  7. Long-wave asymptotic regime for shallow flows (H1) h ∼ ǫ as ǫ → 0 ∂ t = O ( 1 ) , ∂ x = O ( 1 ) , ∂ z = O ( 1 /ǫ ) � z (H2) ∂ x b = O ( ǫ ) ⇒ u z = ( ∂ x b ) u x | z = b − ∂ x u x = O ( ǫ ) b ⇒ ∂ x h = O ( ǫ ) i.e. long waves, since ∂ t h + u x ∂ x ( b + h ) = u z | z = b + h (H3) τ = O ( ǫ ) , hence also η p ∼ ǫ ( λ ∼ 1 ) , ⇒ ∂ z p = ∂ z τ zz − g + O ( ǫ ) (H4) motion by slice ∂ z u x = O ( 1 ) ⇒ ∂ z τ xz = D t u x + O ( ǫ ) compatible with τ xz | z = b , b + h if τ xz = O ( ǫ 2 ) , ⇒ ∂ z u x = O ( ǫ ) Momentum depth-average & u x ( t , x , z ) = u 0 x ( t , x ) + O ( ǫ 2 ) yields � b + h � b + h u x = ∂ t h 0 + ∂ x ( h 0 u 0 x )+ O ( ǫ 2 ) . . . 0 = ∂ x u x + ∂ z u z = ∂ t h + ∂ x b b F. Bouchut & S. Boyaval 7 / 36 Shallow viscoelastic fluids

  8. Viscoelastic Saint-Venant equations Assuming ∂ z τ xx , ∂ z τ zz = O ( 1 ) , we get the closed system   ∂ t h + ∂ x ( hu x ) = 0 ,    � �  h ( u x ) 2 + g h 2    ∂ t ( hu x ) + ∂ x 2 + h ( τ zz − τ xx ) = − g ( ∂ x b ) h ,   ∂ t τ xx + u x ∂ x τ xx = 2 ( ∂ x u x ) τ xx + η p λ ∂ x u x − 1   λτ xx ,       ∂ t τ zz + u x ∂ x τ zz = − 2 ( ∂ x u x ) τ zz − η p λ ∂ x u x − 1   λτ zz . To explore the new reduced model: numerical simulations with a Finite-Volume scheme (conservativity). Anticipating stability of the FV scheme: mathematical entropy. F. Bouchut & S. Boyaval 8 / 36 Shallow viscoelastic fluids

  9. UCM eqns naturally dissipate energy ! With σ = I + 2 λ η p τ , the UCM model rewrites � ∂ t σ + ( u · ∇ ) σ − ( ∇ u ) σ − σ ( ∇ u ) T � λ = I − σ in D t , and thermodynamics imposes σ s.p.d. and a free energy � 1 � � 2 | u | 2 + η p F ( u , σ ) = 4 λ I : ( σ − ln σ − I ) − f · x d x , (3) D t � dt F ( u , σ ) = − η p d I : ( σ + σ − 1 − 2 I ) d x . (4) 4 λ 2 D t F. Bouchut & S. Boyaval 9 / 36 Shallow viscoelastic fluids

  10. Reformulation with energy dissipation  ∂ t h + ∂ x ( hu ) = 0 ,    � �   hu 2 + g h 2  2 + η p   ∂ t ( hu ) + ∂ x 2 λ h ( σ zz − σ xx ) = − gh ∂ x b ,   ∂ t σ xx + u ∂ x σ xx − 2 σ xx ∂ x u = 1 − σ xx   ,   λ     ∂ t σ zz + u ∂ x σ zz + 2 σ zz ∂ x u = 1 − σ zz   , λ � � hu 2 2 + g h 2 2 + gbh + η p ∂ t 4 λ h tr ( σ − ln σ − I ) � � u 2 � tr ( σ − ln σ − I ) ��� 2 + g ( h + b ) + η p + ∂ x hu + σ zz − σ xx 2 λ 2 = − η p 4 λ 2 h tr ( σ + [ σ ] − 1 − 2 I ) . F. Bouchut & S. Boyaval 10 / 36 Shallow viscoelastic fluids

  11. Outline Formal derivation of the mathematical model 1 Discretization of the new model 2 Numerical simulation & physical interpretation 3 F. Bouchut & S. Boyaval 11 / 36 Shallow viscoelastic fluids

  12. Flux (conservative) formulation ∂ t U + ∂ x F ( U ) = S   ∂ t h + ∂ x ( hu ) = 0 ,   � �   hu 2 + P ( h , s ) ∂ t ( hu ) + ∂ x = − gh ∂ x b , ( S )    ∂ t ( h s ) + ∂ x ( hu s ) = h S ( h , s )   , λ � � σ − 1 / 2 , σ 1 / 2 , P ( h , s ) = g h 2 2 + η p where s = xx zz 2 λ h ( σ zz − σ xx ) , h h � � − σ − 3 / 2 2 h ( 1 − σ xx ) , σ − 1 / 2 S ( h , s ) = xx zz 2 h ( 1 − σ zz ) is hyperbolic. � ∂ P � | s = gh + η p ∇ F : real eigenvalues ( 2 λ ( 3 σ zz + σ xx ) > 0) ∂ h � gh + η p λ 1 , 3 = u ± 2 λ ( 3 σ zz + σ xx ) g.n.l , λ 2 = u l.d. . Shall we discretize ( S ) by splitting: i) conservation ii) diffusion ? F. Bouchut & S. Boyaval 12 / 36 Shallow viscoelastic fluids

  13. Problem: how to ensure stability There is a problem with discretizing ( S ) in conservative variables: the natural energy is not convex with respect to s ! E = hu 2 2 + g h 2 2 + gbh + η p � 4 λ h ( σ xx + σ zz − ln ( σ xx σ zz ) − 2 ) Now, convexity is essential to entropic stability of FV schemes (Jensen) and to preserve the invariant domain { h , σ xx , σ zz ≥ 0 } . F. Bouchut & S. Boyaval 13 / 36 Shallow viscoelastic fluids

  14. A splitted Finite-Volume approach Free-energy-dissipating FV scheme: piecewise constants (anticipate: approximations of non-conservative variables) q ≡ ( q 1 , q 2 , q 3 , q 4 ) T := ( h , hu , h σ xx , h σ zz ) T on a mesh of R with cells ( x i − 1 / 2 , x i + 1 / 2 ) , i ∈ Z of x i − 1 / 2 + x i + 1 / 2 volumes ∆ x i = x i + 1 / 2 − x i − 1 / 2 at centers x i = 2 At each discrete time t n , variables updated by splitting: 1 Without source: Riemann problems (Godunov approach) 2 + topo h ∂ x b : preprocessing (hydrostatic reconstruction) 3 + dissipative sources in σ : implicit Main difficulties: free-energy dissipation + h , σ xx , σ zz ≥ 0 F. Bouchut & S. Boyaval 14 / 36 Shallow viscoelastic fluids

  15. Finite Volume discretization q n i + 1 q n i x i x i + 1 x x i − 1 / 2 x i + 1 / 2 x i + 3 / 2 F. Bouchut & S. Boyaval 15 / 36 Shallow viscoelastic fluids

  16. Step 1: Godunov approach � � x i + 1 / 2 n + 1 q n 1 1 x i − 1 / 2 q appr ( t n + 1 − 0 , · ) i ≈ ∆ x i q ( t n , · ) → q 2 = ∆ x i i ∆ x i � x − x i + 1 / 2 � q appr ( t , x ) = R , q n i , q n for x i < x < x i + 1 , i + 1 t − t n R ( x t , q l , q r ) is Riemann solver of the system without source, � t < − ∆ x i x 2 ∆ t ⇒ R ( x t , q i , q i + 1 ) = q i , + CFL for ∆ t = t n + 1 − t n . t > ∆ x i + 1 x 2 ∆ t ⇒ R ( x t , q i , q i + 1 ) = q i + 1 , �� 0 � � i + ∆ t n + 1 = q n R ( ξ, q n i , q n i + 1 ) − q n q 2 d ξ i i ∆ x i − ∆ x i / 2 � � ∆ x i / 2 � � R ( ξ, q n i − 1 , q n i ) − q n + d ξ i 0 F. Bouchut & S. Boyaval 16 / 36 Shallow viscoelastic fluids

  17. Step 1: the free-energy flux condition � � � 0 1 n + 1 R ( ξ, q n i , q n E ( q 2 ) ≤ E i + 1 ) d ξ i ∆ x i − ∆ x i / 2 � � � ∆ x i / 2 1 R ( ξ, q n i − 1 , q n + E i ) d ξ ∆ x i 0 with Jensen inequality and the definitions (whatever G ) � �� � 0 � � � G l ( q l , q r ) = G ( q l ) − E R ( ξ, q l , q r ) − E q l d ξ, −∞ � �� � ∞ � � � G r ( q l , q r ) = G ( q r ) + E R ( ξ, q l , q r ) − E q r d ξ, 0 implies, provided G r ( q l , q r ) ≤ G ( q l , q r ) ≤ G l ( q l , q r ) � � ∆ t n + 1 E ( q n G ( q n i − 1 , q n i ) − G ( q n i , q n E ( q 2 ) ≤ i ) + i + 1 ) i ∆ x i F. Bouchut & S. Boyaval 17 / 36 Shallow viscoelastic fluids

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend