an efficient splitting technique for two layer shallow
play

An efficient splitting technique for two-layer shallow-water model - PowerPoint PPT Presentation

I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS An efficient splitting technique for two-layer shallow-water model Christophe Berthon 1 , Franoise Foucher 1 and Tomas Morales


  1. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS An efficient splitting technique for two-layer shallow-water model Christophe Berthon 1 , Françoise Foucher 1 and Tomas Morales 2 1-Laboratoire de mathématiques Jean Leray, CNRS and Université de Nantes, France 2-Dpto. de Matemáticas, Universidad de Córdoba, Spain HYP 2012 – Padova

  2. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS Outline 1. Introduction 2. One-layer system 3. Two-layer splitting system 4. Properties 5. Second-order scheme 6. Numerical results

  3. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS Two superposed layers on a non flat bottom h h 1 (t,x)+h 2 (t,x)+z(x) : surface ρ 1 > 0 h 1 (t,x) h 2 (t,x)+z(x) : interface u 1 (t,x) ρ 2 > ρ 1 h 2 (t,x) r = ρ 1 / ρ 2 z(x) : topography u 2 (t,x) x

  4. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS Equations We consider the following system of equations modelling the flow of two shallow water layers :  ∂ t h 1 + ∂ x ( h 1 u 1 ) = 0    1 + g ∂ t ( h 1 u 1 )+ ∂ x ( h 1 u 2 2 h 2  1 ) = − gh 1 ∂ x ( h 2 + z )  ∂ t h 2 + ∂ x ( h 2 u 2 ) = 0    2 + g ∂ t ( h 2 u 2 )+ ∂ x ( h 2 u 2 2 h 2  2 ) = − gh 2 ∂ x ( r h 1 + z )  This problem has been already adressed, we can cite C. Parés, M. Castro, J. Macías, F. Bouchut, T. Morales, T. Chacón, E. Fernández, J. García, E. Audusse, J. Sainte-Marie, . . .

  5. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS Motivations We are looking for a scheme which is expected to : • preserve h 1 ≥ 0, h 2 ≥ 0, • preserve the steady states at rest (well-balancing property) :  u 1 = u 2 = 0   h 1 + h 2 + z = cst  r h 1 + h 2 + z = cst  • be in agreement with real results especially if r approaches 1. Idea : apply what we did for the one-layer problem : C. Berthon, F. Foucher, Efficient well-balanced hydrostatic upwind schemes for shallow-water equations, JCP , 2012.

  6. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS One-layer system � ∂ t h + ∂ x ( hu ) = 0 ∂ t ( hu )+ ∂ x ( hu 2 + g 2 h 2 ) = − hg ∂ x z We see that the steady states at rest are given by : � u = 0 h + z = cst In order to derive a well-balanced scheme, the idea is to introduce the free surface : H = h + z Then, using the associated fraction of water X = h H and writing : h 2 = h ( H − z ) = hH − hz = XH 2 − hz ,

  7. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS New one-layer system we transform for weak solutions the initial system into : � ∂ t h + ∂ x ( XHu ) = 0 X ( Hu 2 + g 2 H 2 ) − g � � ∂ t ( hu )+ ∂ x = − gh ∂ x z 2 hz which can be written : ∂ t w + ∂ x ( Xf ( W )) = S ( H , h ) where  � � � � h H  w = and W = are state vectors, h ≥ 0 , H > 0 ,    hu Hu  � � � � Hu 0  f ( W ) = and S ( H , h ) =   Hu 2 + g g 2 H 2  2 ∂ x ( h ( H − h )) − gh ∂ x ( H − h ) 

  8. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS New two-layer system We introduce : � H 1 = h 1 + h 2 + z and X 1 = h 1 H 1 H 2 = r h 1 + h 2 + z and X 2 = h 2 H 2 and state vectors : � � � � h j H j w j = and W j = , h j ≥ 0 , H j > 0 , j = 1 , 2 h j u j H j u j In order to transform the two-layers system, we write that � h 2 1 = X 1 H 1 ( H 1 − h 2 − z ) h 2 2 = X 2 H 2 ( H 2 − r h 1 − z )

  9. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS Two-layer splitting system Then we derive the new system :  ∂ t h 1 + ∂ x ( X 1 H 1 u 1 ) = 0    1 + g 1 ) − g � X 1 ( H 1 u 2 2 H 2 �  ∂ t ( h 1 u 1 )+ ∂ x 2 h 1 ( h 2 + z ) = − gh 1 ∂ x ( h 2 + z )  ∂ t h 2 + ∂ x ( X 2 H 2 u 2 ) = 0    2 + g 2 ) − g � X 2 ( H 2 u 2 2 H 2 �  ∂ t ( h 2 u 2 )+ ∂ x 2 h 2 ( r h 1 + z ) = − gh 2 ∂ x ( r h 1 + z )  Finally using that h 2 + z = H 1 − h 1 and r h 1 + z = H 2 − h 2 we turn the system into two similar systems with source terms ∂ t w j + ∂ x ( X j f ( W j )) = S ( H j , h j ) , j = 1 , 2

  10. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS Discretization of f ( W ) • Uniform mesh in space ∆ x = x i + 1 2 − x i − 1 2 • Time step ∆ t = t n + 1 − t n 2 ] at time t n : • Values in the cell [ x i − 1 2 , x i + 1 h n i , u n i , H n i , X n i , w n i , W n i , z i � f h ∆ x ( W n i , W n � i + 1 ) • f ∆ x ( W n i , W n i + 1 ) = computed by a numerical f hu ∆ x ( W n i , W n i + 1 ) scheme (HLLC, VFRoe, relaxation, ...) well-known for the homogeneous system ∂ t w + ∂ x f ( w ) = 0 : i − ∆ t w n + 1 = w n f ∆ x ( w n i , w n i + 1 ) − f ∆ x ( w n i − 1 , w n � � i ) i ∆ x

  11. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS Discretization of S ( H , h ) • We introduce upwind values on interfaces x i + 1 2 : � H n i , X n i si f h ( W n i , W n i + 1 ) > 0 2 = H i + 1 2 , X i + 1 H n i + 1 , X n i + 1 else H i + 1 f h ∆ x ( W n i , W n i + 1 ) 2 X i + 1 � � 2 � W n W n � i + 1 i x i − 1 x i + 1 2 2 • Then we define values h i + 1 2 by : 2 = H i + 1 h i + 1 2 X i + 1 2

  12. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS One-layer scheme • We write the approximation : g 2 ∂ x h ( H − h ) − gh ∂ x ( H − h ) ≃ g � � 2 ( H i + 1 2 − h i + 1 2 ) − h i − 1 2 ( H i − 1 2 − h i − 1 2 ) h i + 1 2 − g � � 2 ( h i + 1 2 + h i − 1 2 ) ( H i + 1 2 − h i + 1 2 ) − ( H i − 1 2 − h i − 1 2 ) = g 2 ( h i + 1 2 − h i − 1 2 ) 2 H i − 1 2 H i + 1 = g 2 ( X i + 1 2 − X i − 1 2 ) 2 H i + 1 2 H i − 1 • We deduce the one-layer scheme : i − ∆ t w n + 1 = w n 2 f ∆ x ( W n i , W n 2 f ∆ x ( W n i − 1 , W n ∆ x ( X i + 1 i + 1 ) − X i − 1 i )) i � � ∆ t 0 + g 2 ( X i + 1 2 − X i − 1 2 ) ∆ x H i − 1 2 H i + 1 2

  13. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS Two-layers scheme We recall the splitting two-layers system : ∂ t w j + ∂ x ( X j f ( W j )) = S ( H j , h j ) , j = 1 , 2 Now, we derive the following scheme to approximate this system, writing the previous one-layer scheme for each layer : j , i − ∆ t w n + 1 = w n 2 f ∆ x ( W n j , i , W n 2 f ∆ x ( W n j , i − 1 , W n ∆ x ( X j , i + 1 j , i + 1 ) − X j , i − 1 j , i )) j , i � � ∆ t 0 + g 2 ( X j , i + 1 2 − X j , i − 1 2 ) H j , i − 1 2 H j , i + 1 2 ∆ x

  14. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS The scheme is well-balanced Let’s suppose u n j , i = 0, H n j , i = H j , where H j constant, j = 1 , 2.

  15. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS The scheme is well-balanced Let’s suppose u n j , i = 0, H n j , i = H j , where H j constant, j = 1 , 2. • Since f ∆ x is consistent, we’ve got f ∆ x ( w , w ) = f ( w ) , so that � � 0 f ∆ x ( W n j , i , W n j , i + 1 ) = g 2 H 2 j

  16. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS The scheme is well-balanced Let’s suppose u n j , i = 0, H n j , i = H j , where H j constant, j = 1 , 2. • Since f ∆ x is consistent, we’ve got f ∆ x ( w , w ) = f ( w ) , so that � � 0 f ∆ x ( W n j , i , W n j , i + 1 ) = g 2 H 2 j • Putting it in the scheme, we get : ( i ) h n + 1 = h n j , i and j , i j , i − ∆ t 2 ) g ( ii ) ( hu ) n + 1 = ( hu ) n 2 H 2 ∆ x ( X j , i + 1 2 − X j , i − 1 j , i j ∆ t + g 2 ( X j , i + 1 2 − X j , i − 1 2 ) ∆ x H j , i − 1 2 H j , i + 1 2

  17. I NTRODUCTION O NE - LAYER SYSTEM T WO - LAYER SPLITTING SYSTEM P ROPERTIES S ECOND - ORDER SCHEME N UMERICAL RESULTS The scheme is well-balanced Let’s suppose u n j , i = 0, H n j , i = H j , where H j constant, j = 1 , 2. • Since f ∆ x is consistent, we’ve got f ∆ x ( w , w ) = f ( w ) , so that � � 0 f ∆ x ( W n j , i , W n j , i + 1 ) = g 2 H 2 j • Putting it in the scheme, we get : ( i ) h n + 1 = h n j , i and j , i j , i − ∆ t 2 ) g ( ii ) ( hu ) n + 1 = ( hu ) n 2 H 2 ∆ x ( X j , i + 1 2 − X j , i − 1 j , i j ∆ t + g 2 ( X j , i + 1 2 − X j , i − 1 2 ) ∆ x H j , i − 1 2 H j , i + 1 2 • Then from (i), we deduce : � H n + 1 = h n + 1 + h n + 1 + z i = h n 1 , i + h n 2 , i + z i = H n 1 , i = H 1 1 , i 1 , i 2 , i . H n + 1 = r h n + 1 + h n + 1 + z i = r h n 1 , i + h n 2 , i + z i = H n 2 , i = H 2 2 , i 1 , i 2 , i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend