recent theoretical studies
play

Recent theoretical studies Akinobu Dot (KEK Theory Center, IPNS / - PowerPoint PPT Presentation

The simplest kaonic nucleus K - pp Recent theoretical studies Akinobu Dot (KEK Theory Center, IPNS / J-PARC branch) Takashi Inoue (Nihon university) Takayuki Myo (Osaka Institute of Technology) 1. Introduction K - pp


  1. The simplest kaonic nucleus “K - pp ” - Recent theoretical studies - Akinobu Doté (KEK Theory Center, IPNS / J-PARC branch) Takashi Inoue (Nihon university) Takayuki Myo (Osaka Institute of Technology) 1. Introduction “K - pp ” investigated with 2. Fully coupled-channel Complex Scaling Method • Formalism • Chiral SU(3)-based potential • Self-consistency for energy-dependent potential in coupled-channel case 3. Result 4. Discussion 5. Summary and future prospects 『 2017 年度 KEK 理論センター J-PARC 分室活動 総括研究会』 , 02. Feb. ’18 @ IQBRC, Tokai, Ibaraki, Japan

  2. 1. Introduction  Kaonic nuclei = Nuclear system with K bar mesons  Strongly attractive K bar N potential Excited hyperon Λ(1405) = K bar N quasi-bound state T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012) Kaonic nuclei = Exotic system!? Y. Akaishi, T. Yamazaki, PRC65, 044005 (2002) Doorway to dense matter? A. Dote, H. Horiuchi, Y. Akaishi, T. Yamazaki, PRC70, 044313 (2004)

  3. We are investigating ... A prototype of kaonic nuclei ... a bridge from Λ(1405) to general kaonic nuclei

  4. Experimental search for K - pp • Deeply bound region (near πΣN threshold = 103 MeV below K bar NN threshold) FINUDA (2005), DISTO (2010), J-PARC E27 (2013) • Shallowly bound region (near K bar NN threshold) J-PARC E15 1 st run (2013) • No signal in bound region and more ... LEPS/SPring8 (2015) Clear evidence of K - pp bound state J-PARC E15 (2 nd run): Exclusive exp. 3 He(K - , Λp )n missing

  5. Theoretical studies of “K - pp” • K - pp should be bound. B K-pp < 100 MeV J-PARC E27 Resonance between πΣN and K bar NN thresholds. DISTO Faddeev-AGS J-PARC E15 Pheno. pot. (E-indep.) FINUDA Variational (Gauss) Pheno. pot. (E-indep.) Variational (Gauss) • Binding energy depends Chial. pot. (E-dep.) Faddeev-AGS on potential type. Chiral pot. (E-dep.) K - pp binding energy [MeV] πΣN threshold K bar NN threshold

  6. 2. “K - pp” investigated with Fully coupled-channel Complex Scaling Method • Formalism • Chiral SU(3)-based potential • Self-consistency for energy-dependent potential in coupled-channel case Discussed with Harada-san, Shinmura-san, and Akaishi-san in J-PARC branch activities

  7. According to early studies ... Prototype system of kaonic nuclei “K - pp” • Akaishi, Yamazaki, PRC76, 045201 (2007) • Ikeda, Sato, PRC76, 035203 (2007) • Shevchenko, Gal, Mares, PRC76, 044004 (2007) • Doté, Hyodo, Weise, PRC79, 014003 (2009) • Ikeda, Kamano, Sato, PTP124, 533 (2010) • Barnea, Gal, Liverts, PLB712, 132 (2012) Resonant state of K bar NN- πΣN - πΛN coupled channel three-body system Resonance & Channel coupling ⇒ “Fully coupled -channel Complex Scaling Method”

  8. S. Aoyama, T. Myo, K. Kato, K. Ikeda, PTP116, 1 (2006) Complex Scaling Method T. Myo, Y. Kikuchi, H. Masui, K. Kato, PPNP79, 1 (2014) … Powerful tool for resonance study of many -body system

  9. Full ccCSM with a pheno. potential NN: Av18 pot. K bar N- πY: Akaishi -Yamazaki pot. (Pheno., E-indep.) Λ* pole = 28 MeV, Γ πΣ /2 = 20 MeV B KN K bar NN cont. The “K - pp” pole for AY-potential case: B KNN = 51 MeV, Γ πYN /2 = 16 MeV Λ*N cont. Scaling angle θ=30 ° πΛN cont. πΣN cont. Dimension = 6400 A. Dote, T. Inoue, T. Myo, PRC 95, 062201(R) (2017)

  10. Comparison of typical calculations of K - pp Variational coupled-channel Faddeev-AGS method (Ikeda-Kamano-Sato, CSM (Dote-Hyodo-Weise, Shevchenko-Gal-Mares) Akaishi-Yamazaki, (Dote-Inoue-Myo) Barnea-Gal-Liverts) × ○ ○ Resonance Bound state Pole on complex approximation energy plane △ ○ ○ Coupled-channel Single channel calc. Explicit treatment incorporating πY channels of all channels into the effective K bar N potential × ○ ○ Wave function (△?) × ○ Potential type ○ Separable type

  11. Hamiltonian 3 1 Meson      Baryon 2 H M T V V    NN ( MB ) ( MB )         bar Baryon K N ,      V     V    3, i ... symmetric for baryon’s site ( i=1,2)       MB MB MB MB  i 1,2 Glöckle, Miyagawa, Few-body Systems 30, 241 (2001)  NN potential = Av18 potential R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, PRC 51, 38 (1995)  K bar N- πY potential = Chiral SU(3)-based potential Theoretical energy-dependent potential A. Dote, T. Inoue, T. Myo, NPA 912, 66 (2013)  ( I 0,1) C   1       1           2   ij ( I 0,1)  : Gaussian form g r r d V r g r 3 ex p     ij ij 3 /2 ij i j i j d 2 8 f m m ij  i j  Ignore YN and πN potentials

  12. Wave function  Baryon-Baryon are antisymmetrized on space, spin and isospin as well as label (flavor). M 3 Glöckle, Miyagawa, Few-body Systems 30, 241 (2001)  Spatial part = Correlated Gaussian function B 1 (3) x 2  including 3 types of Jacobi coordinates  projected onto a parity eigenstate of B 1 B 2 , (3) x 1 B 2

  13. Just diagonalize the complex-scaled Hamiltonian matrix! K bar NN K bar NN K bar NN - πΛN - πΣN θ - K bar NN H ij πΣN πΣN * - πΣN - πΛN πΛN * * - πΛN No channel elimination!!

  14. 2. “K - pp” investigated with Fully coupled-channel Complex Scaling Method • Formalism • Chiral SU(3)-based potential • Self-consistency for energy-dependent potential in coupled-channel case

  15. Chiral SU(3)-based K bar N potential • Anti-kaon, Pion = Nambu-Goldstone boson ... governed by chiral dynamics  Coupled-channel chiral dynamics Non-relativistic potential (Chiral Unitary model)  ( I 0,1) C   1     N. Kaiser, P.B. Siegel, W. Weise, NPA 594 (1995) 325       ij ( I 0,1) V r g r E. Oset, A. Ramos, NPA 635 (1998) 99 ij i j i j 2 8 f m m  i j  Weinberg-Tomozawa term   1     2   g r 3 ex p r d of effective chiral Lagrangian : Gaussian form      ij 3 /2 ij d ij ω i : meson energy  Based on Chiral SU(3) theory → Energy dependence A. Dote, T. Inoue, T. Myo, NPA 912, 66 (2013) Constrained by K bar N scattering length • Old data: a KN(I=0) = -1.70 + i0.67 fm, a KN(I=1) = 0.37 + i0.60 fm A. D. Martin, NPB179, 33(1979) • SIDDHARTA K - p data with a coupled-channel chiral dynamics: a K-p = -0.65 + i0.81 fm, a K-n = 0.57 + i0.72 fm M. Bazzi et al., NPA 881, 88 (2012) Y. Ikeda, T. Hyodo, W. Weise, NPA 881, 98 (2012)

  16. A. Dote, T. Inoue, T. Myo, arXiv: 1710.07589 2. “K - pp” investigated with Fully coupled-channel Complex Scaling Method • Formalism • Chiral SU(3)-based potential • Self-consistency for energy-dependent potential in coupled-channel case

  17. How to deal with E-dep. potential? Chiral SU(3)-based potential = Energy-dependent potential  I ( 0,1) C   1           ij ( I 0,1) V r g r ij i j i j 2 8 f m m  i j • How to treat energy-dependent potentials in many-body system? • Moreover, coupled-channels case??? “Self -consistency for Meson- Baryon energy”

  18. Outline: Self-consistent calc. for E-dep. potential  Find a pole of the K bar NN- πYN three-body system with ccCSM         H E E    M B " K p p " " K pp " " K pp "  Self-consistency for complex Meson-Baryon energy • E(MB) In : assumed in the MB potential • E(MB) Cal : calculated with the obtained “ K - pp ” E(MB) In = E(MB) Cal  Estimation of Meson- Baryon pair energy in “K - pp” • Use averaged meson binding energy B(M) An interacting MB pair carries A. D., T. Inoue, T. Myo, arXiv: 1710.07589 100% of B(M) = “Field picture” • Examine extreme two ansatz 50% of B(M) = “Particle picture” A. D., T. Hyodo, W. Weise, PRC79, 014003 (2009)

  19. A. Dote, T. Inoue, T. Myo, arXiv: 1710.07589 3. Result

  20. Realization of self-consistency Chiral SU(3) pot. Indicator of self-consistency (f π =110 MeV, Martin) Field picture Δ=| E(MB) Cal – E(MB) In | Indicator Δ [MeV] Self-consistent solution : B K-pp = 23.5 MeV, Γ πYN /2 = 9.1 MeV - Re E(MB) In [MeV]

  21. Result Martin constraint SIDDHARTA constraint f π =120 MeV f π =120 MeV 120 120 100 90 90 100 (-B KNN , - Γ/2) [MeV] (-B KNN , - Γ/2) [MeV] Field: ( B, Γ/2) = ( 19 - 36, 8 - 14) Field: ( B, Γ/2) = ( 14 - 28, 8 - 15) Particle: (B, Γ/2) = (30 - 47, 12 - 14) Particle: (B, Γ/2) = (22 - 38, 13 - 18)

  22. Results of “K - pp” J-PARC E27 DISTO J-PARC E15-1 st Faddeev-AGS Pheno. pot. (E-indep.) FINUDA Variational (Gauss) Pheno. pot. (E-indep.) Variational (Gauss) Full ccCSM (Gauss) Chial. pot. (E-dep.) Pheno. pot. (E-indep.) Faddeev-AGS Chiral pot. (E-dep.) Full ccCSM (Gauss) Chiral pot. (E-dep.) K - pp binding energy [MeV] πΣN threshold K bar NN threshold

  23. 4. Discussion K - P P

  24. 1. Dense matter or not? Chiral SU(3) potential Pheno. potential (E-dep.) (E-indep.) A. Dote, T. Inoue and T. Myo, Y. Akaishi and T. Yamazaki, NPA 912, 66 (2013) PRC 65, 044005 (2002) K - B. E. (Λ*) = 28 MeV P B. E. (Λ*) ~ 15 MeV ⇒ Λ* = Λ(1405) ⇒ Λ* = Λ(1420) B. E. (“K - pp”) = 14-38 MeV B. E. (“K - pp”) = 51 MeV K - P P NN distance = 2.2 fm NN distance = 1.9 fm ⇒ ~ 1.6 ρ 0 ⇒ ~ ρ 0 (=0.17 fm -3 )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend