realistic simulations w exact chiral symmetry
play

Realistic simulations w/ exact chiral symmetry T. Kaneko for the - PowerPoint PPT Presentation

Realistic simulations w/ exact chiral symmetry T. Kaneko for the JLQCD/TWQCD collaborations 1 High Energy Accelerator Research Organization (KEK) 2 Graduate University for Advanced Studies Workshop @ Atami, Feb. 27, 2009 T.Kaneko Realistic


  1. Realistic simulations w/ exact chiral symmetry T. Kaneko for the JLQCD/TWQCD collaborations 1 High Energy Accelerator Research Organization (KEK) 2 Graduate University for Advanced Studies Workshop @ Atami, Feb. 27, 2009 T.Kaneko Realistic simulations w/ exact chiral symmetry

  2. introduction introduction 1. introduction: JLQCD/TWQCD collaborations JLQCD collaboration study lattice QCD on super computer system at KEK KEK: S.Hashimoto, H.Ikeda, TK, M.Matsufuru, J.Noaki, N.Yamada YITP: H.Ohki, T.Onogi, E.Shintani, T.Umeda Tsukuba: S.Aoki, K.Takeda, T.Yamazaki Nagoya: H.Fukaya Hiroshima: K-I.Ishikawa, M.Okawa – FY2000: w/ Fujitsu VPP500 (128GFLOPS) N f =0 : KS or Wilson/clover: B K , f B,D , B B , m s , ... – FY2005: w/ Hitachi SR8000 (1.2TFLOPS) N f =2 : clover : M msn , M brn , f π,K , B B N f =2 + 1 : clover : only M msn , M brn , f π,K (w/ CP-PACS Collab.) chiral symmetry breaking due to lattice action ⇒ severely limits applications of gauge ensembles! T.Kaneko Realistic simulations w/ exact chiral symmetry

  3. introduction introduction 1. introduction: chiral symmetry on the lattice chiral symmetry characterize low-energy dynamics of QCD through SSB M 2 msn ∝ m q , ... price of chiral symmetry breaking operator mixing in renormalization : B K modified ChPT : ex. Wilson ChPT (Sharpe-Singleton, 1998, ...) a 2 ln[ m q ] singularities additional LECs, OK for M msn , f P S at NLO; maybe not for others / NNLO Nielsen-Ninomiya no-go theorem, 1981 Ginsparg-Wilson fermions, 1982 GW relation : The following properties can NOT hold { γ 5 , D } = aDγ 5 D/m 0 ⇔ simultaneously: modified chiral symmetry locality δ ¯ q = ¯ qγ 5 , δq = γ 5 (1 − aD/ 2) q translational invariance correct anomaly, no mixing no doublers unphys.species, anomaly examples of D ............? chiral sym. : { γ 5 , D } = 0 T.Kaneko Realistic simulations w/ exact chiral symmetry

  4. introduction introduction 1. introduction: dynamical overlap simulations overlap fermions (Neuberger, 1998) X S q = q D ( m ) q, ¯ m 0 + m m 0 − m “ ” “ ” γ 5 sgn [ H w ( − m 0 )] D ( m ) = + 2 2 ( m = quark mass, m 0 = a tunable parameter) satisfies GW relation exactly! computationally demanding... JLQCD/TWQCD’s project precise determination of MEs ⇒ test of Standard Model, ... current supercomputer system @ KEK (FY2006– FY2010) IBM Blue Gene/L + Hitachi SR11K : 59 TFLOPS in total ⇒ embark large-scale unquenched simulations with overlap fermion in collaboration w/ T.-W.Chiu and T.H.Sheh in Taiwan (TWQCD) T.Kaneko Realistic simulations w/ exact chiral symmetry

  5. introduction introduction Outline outline Introduction simulation method implementation; parameters fixed topology physics results for N f =2 : on-going N f =3 runs � J µ ( x ) J ν (0) � ⇒ talk by E. Shintani (Kyoto) summary T.Kaneko Realistic simulations w/ exact chiral symmetry

  6. implementation simulations parameters measurement 2. simulation method T.Kaneko Realistic simulations w/ exact chiral symmetry

  7. implementation simulations parameters measurement 2.1 implementation: overlap action overlap-Dirac operator ∋ sgn [ H W ] m 0 + m m 0 − m “ ” “ ” γ 5 sgn [ H w ( − m 0 )] , D ( m ) = + m 0 = 1 . 6 2 2 sgn [ H W ] ∼ polynomial / rational approx. Zolotarev (min-max) approx: sgn [ H W ] = H W { p 0 + P l =1 p l / ( H 2 W + q l ) } nested inversion of Dirac operators : very time consuming D ( m ) − 1 ∋ Dx ∋ H − 1 W discontinuity in S q ⇒ modified HMC (Fodor-Katz-Szabo, 2004) : very time consuming locality ⇐ OK, if σ [ H W ] has a positive lower bound ⇒ suppress (near-)zero modes of H W by auxiliary Boltzman weight (JLQCD, 2006) det[ H W ( − m 0 ) 2 ] ∆ W = det[ H W ( − m 0 ) 2 + µ 2 ] , µ = 0 . 2 T.Kaneko Realistic simulations w/ exact chiral symmetry

  8. implementation simulations parameters measurement 2.1 implementation: auxiliary determinant ∆ W : modification of gauge action ⇒ modification of a dependence ∆ W : suppress (near)zero modes of H W ⇒ locality, reduced cost w/ extra-Wilson w/o extra-Wilson 0.04 0.04 0.03 0.03 | λ | 0.02 | λ | 0.02 0.01 0.01 0 0 0 100 200 300 0 300 600 0 100 200 0 50 100 HMC trajectory hitogram hitogram HMC trajectory ∆ W : fix global topology during HMC ⇒ effects should be studied T.Kaneko Realistic simulations w/ exact chiral symmetry

  9. implementation simulations parameters measurement 2.1 implementation: other techniques other techniques multiplications of D : accuracy of sgn [ H W ] = accuracy of chiral sym. σ [ H W ] ⇒ [ λ min , λ thrs ] ∪ [ λ thrs , λ max ] low modes : Lanczos ⇒ low mode projection high modes : Zolotarev approx. (min-max) ⇒ �∇ 4 A 4 P † � / � PP † �| m =0 � 0 . 1(0 . 1) MeV D solver = 5D solver (Edwards et al.,2005) : Schur decomposition ( D ⇒ M 5 ) + even/odd precond. ⇒ CPU cost × 1 / 2 HMC algorithm mass preconditioning +multiple time scale MD ⇒ CPU cost × 1 / 5 Hasenbusch, 2001; Sexton-Weingargen, 1992 no reflection/refraction steps : ⇒ CPU cost × 1 / 4 assembler code for H W multiplications : ⇒ CPU cost × 1 / 3 T.Kaneko Realistic simulations w/ exact chiral symmetry

  10. implementation simulations parameters measurement 2.2 parameters N f =2 runs : completed Iwasaki-gauge + overlap + ∆ W β =2 . 30 ⇒ a ≈ 0 . 118(2) fm ( r 0 =0 . 49 fm) 16 3 × 32 lattice ⇒ L ≃ 2 fm 6 values of m ud ∈ [ m s, phys / 6 , m s, phys ] for Q =0 10000 HMC trajectories at each m ud Q = − 2 , − 4 at m ud ∼ m s , phys / 2 N f =2 + 1 runs : on-going β =2 . 30 ⇒ a ≈ 0 . 107(1) fm ( r 0 =0 . 49 fm) 16 3 × 48 lattice ⇒ L ≃ 1 . 7 fm 2 m s ’s = m s, phys , 1 . 3 × m s, phys ; 5 m ud ’s ∈ [ m s, phys / 6 , m s ] ; 2500 traj. 24 3 × 48 lattice ⇒ L ≃ 2 . 6 fm, M π L � 3 . 7 m s ∼ m s, phys ; m ud ∼ m s, phys / 6 , m s, phys / 4 ; 2500 traj. simulations with Q � =0 are on-going T.Kaneko Realistic simulations w/ exact chiral symmetry

  11. implementation simulations parameters measurement 2.3 measurements: low-mode averaging low-mode averaging (LMA) PS correlator 100 low-modes ⇐ Lanczos 0.2 D u ( k ) λ ( k ) u ( k ) = m π ,eff 1 X u k u † ( D − 1 ) low = k λ k k 0.2 conventional Dn ( D − 1 ) low + ( D − 1 ) high o C Γ = Γ LMA 0 5 10 15 t n o E ( D − 1 ) low + ( D − 1 ) high × Γ vector correlator = C Γ ,LL + C Γ ,HL + C Γ ,LH + C Γ ,HH 1.0 exact low-mode contrib. 0.8 m ρ ,eff ⇒ reduce stat. error remarkably 0.6 preconditioning for D − 1 solver 0.4 conventional 100 modes ⇒ × 8 speed up LMA 0 5 10 15 t ρ ( λ ) , χ t , spectrum, B K , ... T.Kaneko Realistic simulations w/ exact chiral symmetry

  12. implementation simulations parameters measurement 2.3 measurements: all-to-all propagator all-to-all quark propagator (TrinLat, 2005) � π | V 4 | π � 6 high mode ⇐ noise method m = 0.025, |p| = sqrt(2), |p ′ |=0, ∆ t = 7, ∆ t ′ = 7 average over x average over (x, t ) and p D x ( r ) (1 − P low ) η ( r ) = 4 (conn) ( ∆ t , ∆ t ′ ;p,p ′ ) 1 ( D − 1 ) high X x ( r ) η ( r ) † = N r 2 r can construct any correlators C π V 4 π 0 w/o small additional CPU costs smearing function -2 0 20 40 60 80 100 jackknife sample meson momenta ⇒ form factors, hadron decays needs large N r for M HL , M N , ... ⇔ O (100) TB disk pion form factors T.Kaneko Realistic simulations w/ exact chiral symmetry

  13. fixed topology fixed topology topological susceptibility 3. fixed topology T.Kaneko Realistic simulations w/ exact chiral symmetry

  14. fixed topology fixed topology topological susceptibility 3.1 fixed topology fixed topology simulations auxiliary determinant ∆ W ⇒ fix global topology during HMC : problematic ? do NOT suppress local topological fluctuations ⇒ χ t is calculable from fixed Q simulations (next slide) suppressed by 1 /V : small effects ( � 1 %) in MEs effects can be corrected systematically (Aoki et al., 2007) G θ =0 − G Q = G (2) 1 − Q 2 „ c 4 « + O ( V − 3 ) θ =0 χ t V − 2 χ 2 2 χ t V t V topological tunneling will be suppressed at a → 0 ⇒ fixing Q is inevitable for any lattice regularization (w/o modifications of HMC) T.Kaneko Realistic simulations w/ exact chiral symmetry

  15. fixed topology fixed topology topological susceptibility 3.2 topological susceptibility: determination determination from η ′ correlator ( N f =2 ) η ′ correlator ⇒ a constant term ⇒ χ t 1 − Q 2 − χ t „ c 4 « m 2 q � η ′ ( t + ∆ t ) η ′ ( t ) � Q + O ( e − M η ∆ t ) + O ( V − 3 ) = χ t V + 2 χ 2 V t V η ′ correlator for Q =0 Q =0 : 2nd term vanishes 0.004 disconnected connected 4pt function ⇒ c 4 / (2 χ 2 V ) : small η ' 0.002 A + cosh η ′ contamination rapidly damps C(t) A ⇒ clear plateau ( M ′ η > M π ) 0.000 3 sectors Q =0 , − 2 , − 4 at m ud =0 . 050 -0.002 ⇒ consistent results for χ t 5 10 15 20 25 t T.Kaneko Realistic simulations w/ exact chiral symmetry

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend