chiral symmetry and low energy pion photon reactions
play

Chiral Symmetry and Low-Energy Pion-Photon Reactions N. Kaiser (TU - PowerPoint PPT Presentation

Chiral Symmetry and Low-Energy Pion-Photon Reactions N. Kaiser (TU Mnchen) Hadron Physics Seminar, GSI Darmstadt, 26.9.2018 Tests of Chiral Perturbation Theory via low-energy reactions COMPASS@CERN: Primakoff effect to extract


  1. Chiral Symmetry and Low-Energy Pion-Photon Reactions N. Kaiser (TU München) Hadron Physics Seminar, GSI Darmstadt, 26.9.2018 Tests of Chiral Perturbation Theory via low-energy π − γ reactions COMPASS@CERN: Primakoff effect to extract π − γ cross sections π -Compton scattering π − γ → π − γ : electric/magnetic polarizabilities Radiative corrections to π -Compton scattering (and µ ± p → µ ± p ) Chiral anomaly test: π − γ → π − π 0 Neutral and charged pion-pair production: π − γ → π − π 0 π 0 , π + π − π − Radiative corrections to π − γ → 3 π Radiative corrections to proton and neutron magnetic moments N. Kaiser (TUM) Chiral symmetry and low-energy pion-photon reactions

  2. Introduction: Primakoff effect COMPASS experiment at CERN (S. Paul, J. Friedrich, B. Ketzer, B. Grube,...) Primakoff effect: Z Scattering high-energy pions in nuclear Coulomb field (charge Z) allows to extract cross sections for π − γ reactions (equivalent-photon method) Q 2 − Q 2 Z 2 α Q min = s − m 2 d σ min π ds dQ 2 = σ π − γ ( s ) , π ( s − m 2 π ) Q 4 2 E beam s = ( π − γ invariant mass) 2 , Q → 0 momentum transfer by virtual photon Isolate Coulomb peak from strong interaction background Different final-states π − γ , π − π 0 , π − π 0 π 0 , π + π − π − allow to test different aspects of chiral dynamics (low-energy QCD) Diffractive pion-scattering: meson spectroscopy and search for exotics N. Kaiser (TUM) Chiral symmetry and low-energy pion-photon reactions

  3. Pion Compton-scattering Structure of pion at low energies: calculated in chiral perturbation theory General form of pion Compton-scattering amplitude in cm frame: 2 � � �� ǫ 1 · � ǫ 2 · � t = ( k 1 − k 2 ) 2 T πγ = 8 πα − � ǫ 1 · � ǫ 2 A ( s , t ) + � k 2 � k 1 A ( s , t ) + B ( s , t ) , t Corresponding differential cross section: = α 2 d σ � | A ( s , t ) | 2 + | A ( s , t ) + ( 1 + cos θ cm ) B ( s , t ) | 2 � d Ω cm 2 s Tree diagrams ( s -channel pole diagram vanishes, ǫ 1 · ( 2 p 1 + k 1 ) = 0): s − m 2 π A ( s , t ) = 1 , B ( s , t ) = m 2 π − s − t One-loop diagrams (finite after mass renormalization): π − t + √− t � t � 1 4 m 2 � ∼ t 2 > 0 2 + 2 m 2 π ln 2 A ( s , t ) = − ( 4 π f π ) 2 2 m π Electric/magnetic polarizabilities = low-energy const. with α π + β π = 0 α π − β π = α (¯ ℓ 6 − ¯ A ( s , t ) = − β π m π t ℓ 5 ) < 0 , 2 α 24 π 2 f 2 π m π Combination ¯ ℓ 6 − ¯ ℓ 5 = 3 . 0 ± 0 . 3 determined via radiative pion decay π + → e + ν e γ , PIBETA@PSI: axial-to-vector coupl. ratio F A / F V = 0 . 44 N. Kaiser (TUM) Chiral symmetry and low-energy pion-photon reactions

  4. Pion polarizability measurement Two-loop prediction of chiral perturbation theory [J. Gasser et al. (’06)] α π − β π = α (¯ ℓ 6 − ¯ ℓ 5 ) α m π c r + 8 ℓ 6 + 65 ln m π � � � ℓ 2 − ¯ ¯ ℓ 1 + ¯ ℓ 5 − ¯ + 24 π 2 f 2 ( 4 π f π ) 4 π m π 3 12 m ρ � 53 π 2 ¯ 3 + 4 ¯ + 4 ℓ 3 ℓ 4 ℓ 5 ) − 187 − 41 �� 9 (¯ ℓ 1 + ¯ 3 (¯ ℓ 6 − ¯ ℓ 2 ) − 81 + 48 324 α π − β π = ( 5 . 7 ± 1 . 0 ) · 10 − 4 fm 3 , α π + β π = 0 . 16 · 10 − 4 fm 3 COMPASS result: α π − β π = ( 4 . 0 ± 1 . 8 ) · 10 − 4 fm 3 [PRL 114, 062002 (’15)] pion beam 1.15 1.10 x γ = E γ / E π in lab, cos θ cm = 1 − 2 x γ s / ( s − m 2 π ) 1.05 R S 1 0.95 Analysis of data includes: 0.90 0.85 chiral pion-loop corrections A ( s , t ) ∼ ln 2 ( . t . ) 0.4 0.5 0.6 0.7 0.8 0.9 muon beam 1.15 radiative corrections [NPA 812, 186 (’08)] 1.10 1.05 m 2 π − m 2 π 0 )ln 2 ( . t . ) isospin-breaking correction ∼ ( R P 1 previous results from Mainz and Serpukhov: 0.95 α π − β π = ( 12 − 16 ) · 10 − 4 fm 3 0.90 0.85 0.4 0.5 0.6 0.7 0.8 0.9 x J N. Kaiser (TUM) Chiral symmetry and low-energy pion-photon reactions

  5. Radiative corrections to pion Compton scattering Pion-structure effects small: necessary to include radiative corr. of O ( α ) Start with structureless pion: extensive exercise in one-loop scalar QED Include leading pion-structure α π − β π in form of γγ -contact vertex F µν F µν Virtual photon loops + soft γ -radiation ( ω < λ ) give infrared finite result 1 1 - + γ --> π - + γ pion Compton scattering: π λ = 5 MeV 0.5 0.5 λ = 5 MeV 0 radiative correction [%] radiative correction [%] 0 -0.5 -0.5 -1 -1.5 -1 1/2 = 2m π s -2 1/2 = 2m π s -1.5 1/2 = 3m π s 1/2 = 3m π s -2.5 1/2 = 4m π s 1/2 = 4m π s -2 1/2 = 5m π -3 s -4 fm 3 α π = - β π = 3.10 -3.5 -2.5 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 z = cos θ cm z = cos θ cm QED radiative corrections are maximal in backward directions z ≃ − 1 Same kinematical signature as pion polarizability difference α π − β π Suppressed by factor of ∼ 10 Relative size and angular depend. not affected by leading pion-structure N. Kaiser (TUM) Chiral symmetry and low-energy pion-photon reactions

  6. Proton radius from elastic muon-proton scattering COMPASS proposal [S. Paul, J. Friedrich, et al.] : Measure proton charge radius r p = ( 0 . 84 − 0 . 88 ) fm in µ ± p → µ ± p scatter. Generalize Rosenbluth formula to massive muons ( m µ ≥ √− t = Q ) d σ ( 1 γ ) = 4 πα 2 s − ( M p + m µ ) 2 � − 1 � s − ( M p − m µ ) 2 � − 1 � t 2 dt �� ( s + M 2 p − m 2 µ ) 2 µ + t �� � + m 2 4 M 2 p G 2 E ( t ) − t G 2 � � m 2 � G 2 µ − s M ( t ) + t M ( t ) × 4 M 2 p − t 2 Advantage of muons over electrons: much smaller radiative corrections 1 - p -> µ - p -8 full lines: µ + p -> µ + p - p -> e - p dashed lines: µ e E lab = 1 GeV Radiative correction [%] Radiative correction [%] -10 0 E lab = 50 GeV E lab = 100 GeV -12 E lab = 200 GeV -1 -14 -2 -16 infrared cutoff: 50 MeV infrared cutoff: 10 MeV -3 -18 0 0.1 0.2 0.3 0.001 0.01 0.1 2 [GeV 2 ] 2 [GeV 2 ] Q Q Analytical calculation of radiative corrections done for point-like proton: Vertex corrections, vacuum polarization, 2-photon exchange, soft bremsstrahlung N. Kaiser (TUM) Chiral symmetry and low-energy pion-photon reactions

  7. Extracting the chiral anomaly π 0 → 2 γ and γ → 3 π couplings determined by chiral anomaly of QCD Amplitude and cross section for π − ( p 1 ) + γ ( k , ǫ ) → π − ( p 2 ) + π 0 ( p 0 ) : e ǫ µνκλ ǫ µ p ν 1 p κ 2 p λ F 3 π = 9 . 8 GeV − 3 T γ 3 π = 0 M ( s , t ) , 4 π 2 f 3 π � 1 σ tot ( s ) = α ( s − m 2 π )( s − 4 m 2 π ) 3 / 2 dz ( 1 − z 2 ) | M ( s , t ) | 2 ( 4 f π ) 6 π 4 √ s − 1 - -> π - π 0 ) 25 σ tot ( γπ tree + loops + loops + lec + ρ resonance 20 σ [ µ b] 15 10 5 0 2 3 4 5 6 1/2 [m π ] s ρ ( 770 ) -resonance must be included: � s t u � M ( s , t ) ( ρ ) = 1 + 0 . 46 ρ − s − i √ s Γ ρ ( s ) + ρ − t + m 2 m 2 m 2 ρ − u N. Kaiser (TUM) Chiral symmetry and low-energy pion-photon reactions

  8. Extracting the chiral anomaly Dispersive representation of πγ → ππ with p-wave phase shift as input [M. Hoferichter, B. Kubis, D. Sakkas, PRD 86, 116009 (’12)] e u = 3 m 2 M ( s , t ) = F ( s ) + F ( t ) + F ( u ) , π − s − t , 4 π 2 f 3 π ∞ F ( s ) = a + b s + s 2 ds ′ Im F ( s ′ ) � 1 ( s ) e − i δ 1 Im F ( s ) = [ F ( s )+ ˆ F ( s )] sin δ 1 1 ( s ) s ′ 2 ( s ′ − s ) , π 4 m 2 π Relevant subtraction constant C = 3 ( a + b m 2 π ) is fitted to data and matched via the chiral representation to F 3 π m 2 � 2 . 9 − ln m π �� � π C = F 3 π 1 + = 1 . 067 F 3 π ( 4 π f π ) 2 m ρ solid line: C = 9 . 78 GeV − 3 dashed line: C = 12 . 9 GeV − 3 close to threshold, one-photon exchange an important correction: 1 → 1 − 2 e 2 f 2 π / t Good theory waiting for good data N. Kaiser (TUM) Chiral symmetry and low-energy pion-photon reactions

  9. Tree level cross sections for π − γ → 3 π Coulomb gauge ǫ · p 1 = ǫ · k = 0, photon does not couple to incoming π − No γ 4 π vertex at leading order 5 - γ --> 3 π total cross sections: π 4 - π 0 π 0 tree approx. π σ tot [ µ b] 3 - π + π - tree approx. π 2 1 0 3 4 5 6 7 1/2 /m π s Example: total cross section for π − ( p 1 ) + γ ( k , ǫ ) → π − π 0 π 0 � √ s − m π α � π ( µ 2 − m 2 µ 2 − 4 m 2 π ) 2 σ tot ( s ) = d µ 16 π 2 f 4 π ( s − m 2 π ) 3 2 m π π − µ 2 + λ 1 / 2 ( s , µ 2 , m 2 π − µ 2 ) ln s + m 2 � π ) � ( s + m 2 − λ 1 / 2 ( s , µ 2 , m 2 √ s π ) 2 m π ( µ 2 − m 2 π ) / f 2 π is LO chiral ππ -interaction, rest from 3-body phase space How large are next-to-leading order corrections from chiral loops + cts? N. Kaiser (TUM) Chiral symmetry and low-energy pion-photon reactions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend