graphene and chiral fermions
play

Graphene and chiral fermions Michael Creutz BNL & U. Mainz - PowerPoint PPT Presentation

Graphene and chiral fermions Michael Creutz BNL & U. Mainz Extending graphene structure to four dimensions gives a two-flavor lattice fermion action one exact chiral symmetry protects mass renormalization strictly local action


  1. Graphene and chiral fermions Michael Creutz BNL & U. Mainz Extending graphene structure to four dimensions gives • a two-flavor lattice fermion action • one exact chiral symmetry • protects mass renormalization • strictly local action • only nearest neighbor hopping • fast for simulations Michael Creutz BNL & U. Mainz 1

  2. Graphene electronic structure remarkable low excitations described by a massless Dirac equation • two ‘‘flavors’’ of excitation • versus four of naive lattice fermions • • massless structure robust • relies on a ‘‘chiral’’ symmetry • involves mapping circles onto circles Four dimensional extension 3 coordinate carbon replaced by 5 coordinate ‘‘atoms’’ • generalize topology to mapping spheres onto spheres • complex numbers replaced by quaternions • Michael Creutz BNL & U. Mainz 2

  3. Chiral symmetry versus the lattice • Lattice is a regulator • removes all infinities • continuum limit defines a field theory Classical U (1) chiral symmetry broken by quantum effects • a valid lattice formulation must break U (1) axial symmetry • But we want flavored chiral symmetries to protect masses • Wilson fermions break all these • staggered require four flavors for one chiral symmetry • overlap, domain wall non-local, computationally intensive • Graphene fermions do it in the minimum way allowed! Michael Creutz BNL & U. Mainz 3

  4. The graphene structure A two dimensional hexagonal planar structure of carbon atoms A. H. Castro Neto et al., RMP 81,109 [arXiv:0709.1163] • http://online.kitp.ucsb.edu/online/bblunch/castroneto/ • Held together by strong ‘‘sigma’’ bonds, sp 2 One ‘‘pi’’ electron per site can hop around Consider only nearest neighbor hopping in the pi system tight binding approximation • Michael Creutz BNL & U. Mainz 4

  5. Fortuitous choice of coordinates helps solve x x 2 1 a b Form horizontal bonds into ‘‘sites’’ involving two types of atom ‘‘ a ’’ on the left end of a horizontal bond • ‘‘ b ’’ on the right end • all hoppings are between type a and type b atoms • Label ‘‘sites’’ with non-orthogonal coordinates x 1 and x 2 axes at 30 degrees from horizontal • Michael Creutz BNL & U. Mainz 5

  6. Hamiltonian a b � a † x 1 ,x 2 b x 1 ,x 2 + b † H = K x 1 ,x 2 a x 1 ,x 2 a x 1 ,x 2 b + a † x 1 +1 ,x 2 b x 1 ,x 2 + b † x 1 − 1 ,x 2 a x 1 ,x 2 b + a † x 1 ,x 2 − 1 b x 1 ,x 2 + b † x 1 ,x 2 +1 a x 1 ,x 2 a hops always between a and b sites • Go to momentum (reciprocal) space � π 2 π e ip 1 x 1 e ip 2 x 2 ˜ dp 1 dp 2 • a x 1 ,x 2 = a p 1 ,p 2 . 2 π − π • − π < p µ ≤ π Michael Creutz BNL & U. Mainz 6

  7. Hamiltonian breaks into two by two blocks � � ˜ � π dp 1 dp 2 � � a p 1 ,p 2 0 z ˜ a † b † H = K ( ˜ p 1 ,p 2 ) ˜ z ∗ p 1 ,p 2 0 b p 1 ,p 2 2 π 2 π − π + e + ip 2 z = 1 + e − ip 1 where • a b a b b a � � 0 z ˜ H ( p 1 , p 2 ) = K z ∗ 0 Fermion energy levels at E ( p 1 , p 2 ) = ± K | z | energy vanishes when | z | does • exactly two points • p 1 = p 2 = ± 2 π/ 3 Michael Creutz BNL & U. Mainz 7

  8. Topological stability contour of constant energy near a zero point • phase of z wraps around unit circle • cannot collapse contour without going to | z | = 0 • p 2 π 2π/3 E E p 1 −π −2π/3 2π/3 π p p −2π/3 −π allowed forbidden No band gap allowed Graphite is black and a conductor • Michael Creutz BNL & U. Mainz 8

  9. Connection with chiral symmetry • b → − b changes sign of H � � 0 z ˜ • H ( p 1 , p 2 ) = K z ∗ 0 � � 1 0 anticommutes with σ 3 = • 0 − 1 • σ 3 → γ 5 in four dimensions No-go theorem Nielsen and Ninomiya (1981) periodicity of Brillouin zone • wrapping around one zero must unwrap elsewhere • two zeros is the minimum possible • Michael Creutz BNL & U. Mainz 9

  10. Four dimensions Feynman path integral in temporal box of length T ( dA dψ dψ ) e − S = Tr e − Ht � • Z = � 1 ‘‘action’’ S = d 4 x � � • 4 F µν F µν + ψDψ Wick rotation to imaginary time: e iHT → e − HT • four coordinates x, y, z, t • Need Dirac operator D to put into path integral action ψDψ properties: D † = − D = γ 5 Dγ 5 ‘‘ γ 5 Hermiticity’’ • work with Hermitean ‘‘Hamiltonian’’ H = γ 5 D • not the Hamiltonian of the 3D Minkowski theory • Michael Creutz BNL & U. Mainz 10

  11. Look for analogous form to the two dimensional case � � 0 z ˜ H ( p µ ) = K z ∗ 0 • z ( p 1 , p 2 , p 3 , p 4 ) depends on the four momentum components To keep topological argument a 0 • extend z to quaternions • z = a 0 + i� a · � σ a • | z | 2 = � µ a 2 µ Michael Creutz BNL & U. Mainz 11

  12. ˜ H ( p µ ) now a four by four matrix ‘‘energy’’ eigenvalues still E ( p µ ) = ± K | z | • constant energy surface topologically an S 3 • surrounding a zero should give non-trivial mapping • Introduce gamma matrix convention [ γ µ , γ ν ] + = 2 δ µν � � 0 � σ � γ = σ x ⊗ � σ = � σ 0 • � � 0 i γ 4 = − σ y ⊗ 1 = − i 0 � � 1 0 γ 5 = σ z ⊗ 1 = γ 1 γ 2 γ 3 γ 4 = 0 − 1 Michael Creutz BNL & U. Mainz 12

  13. Continuum Dirac action D = ik µ γ µ � � 0 z γ 5 D = H = z ∗ 0 z = k 0 + i� k · � σ Lattice implementation • not unique • local action • only sines and cosines mimic 2-d case • 1 + e − ip 1 + e ip 2 = 1 + cos( p 1 ) + cos( p 2 ) − i (sin( p 1 ) − sin( p 2 )) Michael Creutz BNL & U. Mainz 13

  14. Try z = B (4 C − cos( p 1 ) − cos( p 2 ) − cos( p 3 ) − cos( p 4 )) + iσ x (sin( p 1 ) + sin( p 2 ) − sin( p 3 ) − sin( p 4 )) + iσ y (sin( p 1 ) − sin( p 2 ) − sin( p 3 ) + sin( p 4 )) + iσ z (sin( p 1 ) − sin( p 2 ) + sin( p 3 ) − sin( p 4 )) B and C are constants to be determined control anisotropic distortions • similar to non-orthogonal coordinates in graphene solution • Michael Creutz BNL & U. Mainz 14

  15. Zero of z requires all components to vanish, four relations sin( p 1 ) + sin( p 2 ) − sin( p 3 ) − sin( p 4 ) = 0 sin( p 1 ) − sin( p 2 ) − sin( p 3 ) + sin( p 4 ) = 0 sin( p 1 ) − sin( p 2 ) + sin( p 3 ) − sin( p 4 ) = 0 cos( p 1 ) + cos( p 2 ) + cos( p 3 ) + cos( p 4 ) = 4 C first three imply sin( p i ) = sin( p j ) ∀ i, j • • cos( p i ) = ± cos( p j ) last relation requires C < 1 • if C > 1 / 2 , only two solutions • • p i = p j = ± arccos( C ) Michael Creutz BNL & U. Mainz 15

  16. As in two dimensions • expand about zeros • identify Dirac spectrum • rescale for physical momenta Expanding about the positive solution • p µ = ˜ p + q µ • p = arccos( C ) ˜ Michael Creutz BNL & U. Mainz 16

  17. Reproduces the Dirac equation D = iγ µ k µ if we take k 1 = C ( q 1 + q 2 − q 3 − q 4 ) k 2 = C ( q 1 − q 2 − q 3 + q 4 ) k 3 = C ( q 1 − q 2 + q 3 − q 4 ) k 4 = BS ( q 1 + q 2 + q 3 + q 4 ) √ here S = sin(˜ 1 − C 2 • p ) = Other zero at ˜ p = − arccos( C ) flips sign of γ 4 • the two species have opposite chirality • the exact chiral symmetry is a flavored one • Michael Creutz BNL & U. Mainz 17

  18. B and C control distortions between the k and q coordinates The k coordinates should be orthogonal • the q ’s are not in general • = B 2 S 2 − C 2 q i · q j B 2 S 2 + 3 C 2 | q | 2 If B = C/S the q axes are also orthogonal allows gauging with simple plaquette action • √ Borici: B = 1 , C = S = 1 / • 2 Michael Creutz BNL & U. Mainz 18

  19. Alternative choice for B and C from graphene analogy zeros of z in periodic momentum space form a lattice • give each zero 5 symmetrically arranged neighbors • √ • C = cos( π/ 5) , B = 5 interbond angle θ satisfies cos( θ ) = − 1 / 4 • • θ = acos( − 1 / 4) = 104 . 4775 . . . degrees 4-d generalization of the diamond lattice • Michael Creutz BNL & U. Mainz 19

  20. The physical lattice structure Graphene: one bond splits into two in two dimensions • θ = acos( − 1 / 2) = 120 degrees iterating smallest loops are hexagons • Michael Creutz BNL & U. Mainz 20

  21. Diamond: one bond splits into three in three dimensions tetrahedral environment • • θ = acos( − 1 / 3) = 109 . 4712 . . . degrees iterating smallest loops are cyclohexane chairs • Michael Creutz BNL & U. Mainz 21

  22. 4-d graphene ‘‘hyperdiamond’’: one bond splits into four 5-fold symmetric environment • • θ = acos( − 1 / 4) = 104 . 4775 . . . degrees iterating smallest loops are hexagonal ‘‘chairs’’ • Michael Creutz BNL & U. Mainz 22

  23. Issues and questions Requires a multiple of two flavors can split degeneracies with Wilson terms • Only one exact chiral symmetry not the full SU (2) ⊗ SU (2) • enough to protect mass from additive renormalization • only one Goldstone boson: π 0 • • π ± only approximate One direction treated differently Bedaque, Buchoff, Tibursi, Walker-Loud • γ 4 has a different phase from the spatial gammas with interactions lattice can distort along one direction • requires tuning anisotropy • Michael Creutz BNL & U. Mainz 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend