quantum statistics
play

(quantum statistics) Classical statistical mechanics 1. - PowerPoint PPT Presentation

EE201/MSE207 Lecture 14 Particle distributions at 0 (quantum statistics) Classical statistical mechanics 1. Microcanonical ensemble = const (gas of particles distributed = const among energy/velocity levels) All


  1. EE201/MSE207 Lecture 14 Particle distributions at π‘ˆ β‰  0 (quantum statistics) Classical statistical mechanics 1. Microcanonical ensemble 𝑂 = const (gas of particles distributed 𝐹 = const among energy/velocity levels) All microstates are equally probable (postulate) 2. Canonical ensemble 𝑂 = const 𝐹 β‰  const (exchange of heat) 𝑄 𝐹 ∝ 𝑓 βˆ’πΉ/π‘ˆ Probability of a state ( 𝑙 𝐢 = 1, 𝑙 𝐢 π‘ˆ β†’ π‘ˆ ) big reservoir Follows from the postulate for microcaconical ensemble (this is how temperature is introduced)

  2. Classical statistical mechanics (cont.) 3. Grand canonical ensemble 𝑂 β‰  const (particles can penetrate) 𝐹 β‰  const Probability of a state 𝑄 𝐹, 𝑂 ∝ 𝑓 βˆ’(πΉβˆ’πœˆπ‘‚)/π‘ˆ (two parameters: temperature and chemical potential) Chemical potential 𝜈 : average energy cost of bringing an extra particle from big reservoir The formula for 𝑄(𝐹, 𝑂) also follows from equiprobability in microcanonical ens. From 𝑄(𝐹, 𝑂) we can derive π‘œ(𝜁) : average number of particles with energy 𝜁 π‘œ 𝜁 = exp βˆ’ 𝜁 βˆ’ 𝜈 𝐹 = 𝑗 π‘œ 𝜁 𝑗 𝜁 𝑗 Maxwell-Boltzmann distribution π‘ˆ 𝑄 𝑙 : probability to have 𝑙 particles with quantized (binned) energy 𝜁 Derivation 𝑓 βˆ’π‘™ πœβˆ’πœˆ /π‘ˆ 𝑙! ( 𝑙! comes from number of combinations) 𝑄 𝑙 = 𝑄 0 οƒž ∞ 𝑙=0 οƒž 𝑄 0 = 𝑄 𝑙 = 1 1 exp[exp(βˆ’(𝜁 βˆ’ 𝜈)/π‘ˆ)] 𝑙 = exp[βˆ’ (𝜁 βˆ’ 𝜈) π‘ˆ]

  3. Quantum statistics Main difference: indistinguishable particles (instead of a question β€œwhich one” we are only allowed to ask β€œhow many”) 1 12 2 Example: two particles classical 12 2 1 on two levels equal probabilities, 1/4 each I II quantum II I equal probabilities, 1/3 each Fermions Either 0 or 1 particle on a level with energy 𝜁 (spin increases number of levels, still no 2 particles on the same level) 𝑄 1 = 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ Still use classical relation 𝑄 𝐹, 𝑂 ∝ 𝑓 βˆ’ πΉβˆ’πœˆπ‘‚ /π‘ˆ 𝑄 0 1 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ β‡’ 𝑄 0 = 1 + 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ , 𝑄 1 = 1 + 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ , 𝑄 0 + 𝑄 1 = 1 1 Fermi-Dirac distribution β‡’ π‘œ = 𝑄 1 = (Fermi statistics) 1 + 𝑓 πœβˆ’πœˆ /π‘ˆ 𝜈 is Fermi level (chemical vs. electrochemical)

  4. Quantum statistics (cont.) Bosons 𝑄 𝑄 𝑄 2 1 3 = 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ , = 𝑓 βˆ’2 πœβˆ’πœˆ /π‘ˆ , = 𝑓 βˆ’3 πœβˆ’πœˆ /π‘ˆ , . . . 𝑄 𝑄 𝑄 0 0 0 1 1 + 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ + 𝑓 βˆ’2 πœβˆ’πœˆ /π‘ˆ + . . . = 1 βˆ’ 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ β‡’ 𝑄 𝑄 0 = π‘œ = 1 1 + 2 βˆ™ 𝑄 2 + . . . = 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ (1 βˆ™ 𝑓 βˆ’πœβˆ’πœˆ π‘ˆ + 2 βˆ™ 𝑓 βˆ’2πœβˆ’πœˆ π‘ˆ + β‹― ) π‘œ = 0 βˆ™ 𝑄 0 + 1 βˆ™ 𝑄 π‘ˆ 𝑓 βˆ’πœβˆ’πœˆ 𝑓 βˆ’2πœβˆ’πœˆ 𝑓 βˆ’πœβˆ’πœˆ = 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ π‘ˆ π‘ˆ π‘ˆ + + β‹― = π‘ˆ 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ π‘ˆ π‘ˆ π‘ˆ 1 Bose-Einstein distribution π‘œ = 𝑓 πœβˆ’πœˆ /π‘ˆ βˆ’ 1 (Bose statistics) 𝜈 ≀ 0 (if energy starts from 0), otherwise infinity at 𝜁 = 𝜈

  5. Particle distributions: summary ο€­  𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ Maxwell-Boltzmann οƒ—  𝜁 (Boltzmann) 1 π‘ˆ = 0  π‘œ 𝜁 = Fermi-Dirac 𝑓 πœβˆ’πœˆ /π‘ˆ + 1 οƒ— (Fermi)  𝜁 𝜈 1 ο€­ ο€­ ο€­ Bose-Einstein 𝑓 πœβˆ’πœˆ /π‘ˆ βˆ’ 1 οƒ— (Bose) ο€­ 𝜁 𝜈 𝜈 is Fermi level ο€­ ο€­ To find 𝜈 : 𝑂 = π‘œ 𝜁 𝐸 𝜁 π‘’πœ π‘œ(𝜁) depends on temperature β‡’ 𝜈 depends on temperature density of states Remark 1. Often notation 𝑔 𝜁 instead of π‘œ(𝜁) , especially for Fermi distribution Remark 2. Large- 𝜁 tails of Fermi-Dirac and Bose-Einstein distributions coincide with Maxwell-Boltzmann distribution

  6. 2D case (not in textbook) 𝐸 𝜁 𝑛 𝐸 𝜁 is density of states, 𝐡 is area = 2𝑑 + 1 2πœŒβ„ 2 𝐡 𝑑 is spin, in general 2𝑑 + 1 is degeneracy Electrons (Fermi, 𝑑 = 1 2 ) spin spin ∞ 𝑂 𝑛 1 𝑛 2πœŒβ„ 2 2 π‘ˆ ln(1 + 𝑓 𝜈/π‘ˆ ) 𝐡 = 2πœŒβ„ 2 2 𝑓 (πœβˆ’πœˆ)/π‘ˆ + 1 π‘’πœ = 0 No spin factor of 2 in high magnetic field Bosons with 𝑑 = 0 ∞ 𝑂 𝑛 1 𝑛 2πœŒβ„ 2 π‘ˆ ln(1 βˆ’ 𝑓 𝜈/π‘ˆ ) 𝐡 = 𝑓 (πœβˆ’πœˆ)/π‘ˆ βˆ’ 1 π‘’πœ = 2πœŒβ„ 2 0

  7. 3D case = 𝑛 3/2 𝜁 1/2 𝐸 𝜁 𝐸 𝜁 is density of states, π‘Š is volume 2𝑑 + 1 π‘Š 2 𝜌 2 ℏ 3 𝑑 is spin, in general 2𝑑 + 1 is degeneracy (including valleys, etc.) ∞ 𝑛 3/2 𝜁 1/2 𝑂 1 π‘Š = 𝑓 (πœβˆ’πœˆ)/π‘ˆ Β± 1 (2𝑑 + 1) π‘’πœ 2 𝜌 2 ℏ 3 0 degeneracy ∞ 𝜁 𝑛 3/2 𝜁 1/2 𝐹 1 π‘Š = 𝑓 (πœβˆ’πœˆ)/π‘ˆ Β± 1 (2𝑑 + 1) π‘’πœ (e.g., for heat capacity) 2 𝜌 2 ℏ 3 0 Fermi: β€œ + ”, Bose: β€œ βˆ’ ” Unfortunately, these integrals cannot be calculated analytically. Simplification if βˆ’πœˆ ≫ π‘ˆ , then F-D and B-E distributions reduce to M-B. 1 𝑓 (πœβˆ’πœˆ)/π‘ˆ Β± 1 β‰ˆ 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ 𝜁 βˆ’ 𝜈 ≫ π‘ˆ when

  8. Nondegenerate semiconductor Assume n-type (p-type similar), βˆ’πœˆ ≫ π‘ˆ , 2𝑑 + 1 = 2 conduction band > 3π‘ˆ 𝜈 ∞ 𝑛 3/2 𝜁 1/2 (Fermi level) 𝑂 2 𝜌 2 ℏ 3 𝑓 βˆ’(πœβˆ’πœˆ)/π‘ˆ 2 π‘’πœ = . . . π‘Š β‰ˆ 0 valence band (neglect) 3/2 π‘›π‘ˆ = 2 𝑓 𝜈/π‘ˆ Room temperature: π‘ˆ = 26 meV 2πœŒβ„ 2 3/2 2πœŒβ„ 2 𝜈 = π‘ˆ ln 𝑂 1 π‘Š 2 π‘›π‘ˆ degeneracy; can be larger, Si: 2 ο‚΄ 6 ∞ 𝜁 𝑛 3 2 𝜁 1 2 𝐹 π‘ˆ 2 π‘’πœ = . . . = 3 2 π‘ˆ 𝑂 2 𝜌 2 ℏ 3 𝑓 βˆ’ πœβˆ’πœˆ π‘Š β‰ˆ π‘Š 0 𝐹 = 3 2 π‘ˆπ‘‚

  9. Bose-Einstein condensation For Bose-Einstein distribution usually 𝜈 < 0 (cannot be 𝜈 > 0 ). However, at small enough π‘ˆ , it becomes 𝜈 = 0 , then ∞ 𝑛 3/2 𝜁 1/2 3 𝑂 1 π‘›π‘ˆ ( 𝑑 = 0) π‘Š = 𝑓 βˆ’πœˆ/π‘ˆ βˆ’ 1 π‘’πœ = 2.61 2πœŒβ„ 2 2 𝜌 2 ℏ 3 0 2/3 𝑑 = 2πœŒβ„ 2 𝑂 π‘ˆ Therefore critical temperature 𝑛 2.61 π‘Š Below π‘ˆ 𝑑 particles crowd into the ground state (finite fraction of all particles occupy ground state) 𝑂 = 𝑂 0 + π‘œ 𝜁 𝐸 𝜁 π‘’πœ Different calculation: Examples: superconductivity, superfluidity, B-E condensation of atoms

  10. Massless particles (photons, phonons) 𝑙 = 2𝜌 πœ‡ = πœ• 𝜁 = β„πœ• speed of light or sound velocity 𝑑 Number of particles is not conserved β‡’ 𝜈 = 0 (creation of extra particle does not cost extra energy) 1 π‘œ(πœ•) = (bosons) 𝑓 β„πœ•/π‘ˆ βˆ’ 1 𝑒𝑂 = 𝑒𝑦 𝑒𝑙 𝑦 𝑒𝑧 𝑒𝑙 𝑧 𝑒𝑨 𝑒𝑙 𝑨 𝑒𝑂 π‘Š = 𝑒𝑙 𝑦 𝑒𝑙 𝑧 𝑒𝑙 𝑨 β‡’ DOS: 2𝜌 3 2𝜌 3 π‘Š π‘’πœ• = 4πœŒπ‘™ 2 πœ• 2 𝑒𝑂 𝑒𝑙 Γ— 2 for photons (two polarizations) π‘’πœ• = 2 3 + 1 2𝜌 3 2𝜌 2 𝑑 3 Γ— 3 for phonons, better 3 𝑑 βŠ₯ 𝑑 βˆ₯ Average energy per dπœ• (for photons) π‘Š π‘’πœ• = β„πœ• 2πœ• 2 2β„πœ• 3 𝑒𝐹 1 𝑓 β„πœ•/π‘ˆ βˆ’ 1 = (Planck’s formula) 2𝜌 2 𝑑 3 (𝑓 β„πœ•/π‘ˆ βˆ’ 1) 2𝜌 2 𝑑 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend