rapid light manipulation techniques for collinear laser
play

Rapid Light Manipulation Techniques for Collinear Laser Spectroscopy - PowerPoint PPT Presentation

Rapid Light Manipulation Techniques for Collinear Laser Spectroscopy and their Application for Neutron-Deficient Francium Annika Voss University of Jyvskyl Finland European Nuclear Physics Conference 2015 Groningen, NL e Nuclear Laser


  1. Rapid Light Manipulation Techniques for Collinear Laser Spectroscopy and their Application for Neutron-Deficient Francium Annika Voss University of Jyväskylä Finland European Nuclear Physics Conference 2015 Groningen, NL

  2. e Nuclear Laser Spectroscopic Landscape Status as of July 20th, 2015 Light Manipulation & n-def. Francium Annika Voss Unpublished data Published data Stable isotopes EuNPC 2015 Z=82 N=152 N=126 Z=50 Z=40 N=82 Z=28 Z=20 N=50 N=40 N=28 N=20

  3. Nuclear Properties from Atomic Spectra Hyperfine Structures Light Manipulation & n-def. Francium Annika Voss static deformation Q dynamic deformation r sph Z r Q Electric quadrupole moment Q S Magnetic dipole moment Nuclear spin I EuNPC 2015 Isotope Shis → Changes in RMS charge radii δ ⟨ r 2 ⟩ Isotope 1 I = 0 δ ⟨ r 2 ⟩ A , A ′ ≈ δ ⟨ r 2 ⟩ A , A ′ sph · 5 sph + ⟨ r 2 ⟩ A ′ 4 πδ ⟨ β 2 2 ⟩ A , A ′ I = 0 Isotope 2 Counts Isotope 3 I > 1 / 2 Centroid Relative Frequency [MHz]

  4. Nuclear Properties from Atomic Spectra Isotope Shis Light Manipulation & n-def. Francium Annika Voss static deformation Q dynamic deformation r Hyperfine Structures EuNPC 2015 → Changes in RMS charge radii δ ⟨ r 2 ⟩ Isotope 1 I = 0 δ ⟨ r 2 ⟩ A , A ′ ≈ δ ⟨ r 2 ⟩ A , A ′ sph · 5 sph + ⟨ r 2 ⟩ A ′ 4 πδ ⟨ β 2 2 ⟩ A , A ′ → Nuclear spin I I = 0 Isotope 2 → Magnetic dipole moment µ Counts → Electric quadrupole moment Q S Q 0 ≈ 5 Z ⟨ r 2 ⟩ sph √ ⟨ β 2 ⟩ (1 + 0 . 36 ⟨ β 2 ⟩ ) Isotope 3 I > 1 / 2 5 π Centroid Relative Frequency [MHz]

  5. Nuclear Properties from Atomic Spectra Isotope Shis Light Manipulation & n-def. Francium Annika Voss Hyperfine Structures EuNPC 2015 → Changes in RMS charge radii δ ⟨ r 2 ⟩ Isotope 1 I = 0 δ ⟨ r 2 ⟩ A , A ′ ≈ δ ⟨ r 2 ⟩ A , A ′ sph · 5 sph + ⟨ r 2 ⟩ A ′ 4 πδ ⟨ β 2 2 ⟩ A , A ′ → Nuclear spin I I = 0 Isotope 2 → Magnetic dipole moment µ Counts → Electric quadrupole moment Q S Q 0 ≈ 5 Z ⟨ r 2 ⟩ sph √ ⟨ β 2 ⟩ (1 + 0 . 36 ⟨ β 2 ⟩ ) Isotope 3 I > 1 / 2 5 π Centroid δ ⟨ r 2 ⟩ → ⟨ β 2 2 ⟩ dynamic deformation Relative Frequency [MHz] Q 0 → ⟨ β 2 ⟩ static deformation

  6. Hyperfine Pumping Spins: Light Manipulation & n-def. Francium Annika Voss high-spin multiplet I J . Relative intensities of individual HFS transitions: . EuNPC 2015 Selection Rules: I nuclear J electronic F J 208 Fr I = 7 F ′ = 17/2 15/2 7 2 P 3 / 2 13/2 total; ⃗ F = ⃗ I + ⃗ 11/2 100 55.3 S J,J ′ 22.5 → J ′ = 0 ∆ J = 0 , ± 1; J = 0 ✟ ❍ ✟ ❍ → F ′ = 0 F = ∆ F = 0 , ± 1; F = 0 ✟ ❍ ✟ ❍ 15/2 7 2 S 1 / 2 A B C 13/2 } 2 { F F ′ 1 S F , F ′ = (2 F + 1)(2 F ′ + 1) S J , J ′ , J ′

  7. e Laser Spectroscopy Beamline @ T Annika Voss Light Manipulation & n-def. Francium EuNPC 2015 RFQ

  8. Collinear Laser System for Intensity Modulation and Fast Frequency Switching Light Manipulation & n-def. Francium Annika Voss EuNPC 2015 Beam Pro fi ler Movable 7m Mirror to Beamline Intensity Modulation Focus & Power Adjustment, φ -EOM Beamline Injection 100m Fibre Link (single-mode) Blocked Path Monitor HeNe Faraday Isolator f1 ν -AOM f2 λ /4 Interference Filter ν -EOM IRIS Frequency Switching λ /2 λ -meter Fabry-Pérot Etalon Photodiode 300MHz M2 SolsTiS Lighthouse Frequency Stabilisation SPROUT

  9. High-Frequency Intensity Modulation . Light Manipulation & n-def. Francium Annika Voss Voss et al. , 2013, Phys. Rev. Le. 111, 122501 . Voss et al. , 2013, PRL 111, 122501 EuNPC 2015 to data aquisition system 7 p 2 P 3/2 photomultiplier tube charge acceleration exchange electrodes uorescence cell + - photons + + + + ++ + + + + oo o oo + + o o + + ooo o oo o - + 7 s 2 S 1/2 counter-propagating hot alkali vapour ~40 cm laser beam or ~3 µs at E = 20 keV continuous photon stream 140 10 3 120 10 2 continuous Normalised count rate 100 Expected Intensity [%] 10 1 80 10 0 60 10 − 1 Transitions A & F 40 10 − 2 Transition B Transition C 20 10 − 3 Transition D Transition E 10 − 4 0 0 2 4 6 8 10 − 24500 − 24000 − 23500 − 23000 − 22500 − 22000 − 21500 Photon Scatters Frequency with respect to 208 Fr centroid [MHz]

  10. High-Frequency Intensity Modulation . Light Manipulation & n-def. Francium Annika Voss Voss et al. , 2013, Phys. Rev. Le. 111, 122501 Voss et al. , 2013, PRL 111, 122501 . EuNPC 2015 to data aquisition system 7 p 2 P 3/2 photomultiplier tube charge acceleration exchange electrodes uorescence cell + - photons + + + + ++ + + + + oo o oo + + o o + + ooo o oo o - + 7 s 2 S 1/2 counter-propagating hot alkali vapour ~40 cm laser beam or ~3 µs at E = 20 keV photon pulse-train 140 10 3 120 10 2 continuous Normalised count rate 100 Expected Intensity [%] 10 1 80 10 0 modulated 60 10 − 1 Transitions A & F 40 10 − 2 Transition B Transition C 20 10 − 3 Transition D Transition E 10 − 4 0 0 2 4 6 8 10 − 24500 − 24000 − 23500 − 23000 − 22500 − 22000 − 21500 Photon Scatters Frequency with respect to 208 Fr centroid [MHz]

  11. Rapid Frequency Switching Voss et al. , 2015, PRC 91, 044307 Light Manipulation & n-def. Francium Annika Voss Voss et al. , 2015, Phys. Rev. C 91, 044307 EuNPC 2015 to data f1 ν -AOM f2 λ /4 aquisition system photomultiplier IRIS tube charge acceleration exchange electrodes fluorescence cell - + photons + + + + ++ + + + + o oo o o oo + + + ooo + o o oo + - counter-propagating hot alkali vapour laser beam photon pulse-train 160 RF1, 90MHz 140 RF2, 100MHz RF3, 110MHz 120 Counts per 5ns 100 80 60 40 20 0 140 120 100 80 60 40 20 0 0 2 4 6 8 10 Time [ µ s]

  12. Rapid Frequency Switching Voss et al. , 2015, PRC 91, 044307 Light Manipulation & n-def. Francium Annika Voss Voss et al. , 2015, Phys. Rev. C 91, 044307 EuNPC 2015 to data f1 ν -AOM f2 λ /4 aquisition system photomultiplier IRIS tube charge acceleration exchange electrodes fluorescence cell - + photons + + + + ++ + + + + o oo o o oo + + + ooo + o o oo + - counter-propagating hot alkali vapour laser beam photon pulse-train 160 RF1, 90MHz 140 0 . 6 RF2, 100MHz RF3, 110MHz 120 0 . 4 Counts per 5ns ν RF1 0 . 2 100 0 . 0 80 Count Rate 0 . 6 60 0 . 4 ν RF2 40 0 . 2 20 0 . 0 0 140 0 . 6 120 100 ν RF3 0 . 4 80 60 0 . 2 40 20 0 . 0 0 − 22800 − 22700 − 22600 − 22500 − 22400 0 2 4 6 8 10 Relative Frequency [MHz] Time [ µ s]

  13. EuNPC 2015 7 . Mass gs m1 m2 206 3 10 Voss et al. , 2015, Phys. Rev. C 91, 044307 205 9/2 204 3 7 10 Annika Voss Light Manipulation & n-def. Francium . Fluorescence Spectra of 204,205,206 Fr 15 10 5 208 Fr m1 g m2 m2 g&m1 2 . 0 1 . 5 1 . 0 206 Fr Count Rate 0 . 5 1 . 2 0 . 8 205 Fr 0 . 4 1 . 2 m1 g m2 m2 g&m1 0 . 8 204 Fr 0 . 4 − 24000 − 22000 − 20000 − 18000 − 16000 − 12000 − 11000 − 10000 − 9000 13000 14000 15000 24000 26000 28000 30000 Relative Frequency [MHz] ⇒ First direct and unique spin determinations:

  14. g -factors Voss et al. , 2013, Phys. Rev. Le. 111, 122501 & 2015, Phys. Rev. C 91, 044307 Light Manipulation & n-def. Francium Annika Voss Coc et al. ,1985, Phys. Le. B. 163, 66 EuNPC 2015 2 . 0 Coc g emp corresponding to Triumf [( π 1 h 9/2 ) ⊗ ( ν 3 p 3/2 )] 3 1 . 5 I=3 I=3 g -factor [( π 1 h 9/2 ) ⊗ ( ν 3 p 1/2 )] 5 1 . 0 [( π 1 h 9/2 )] 9/2 [( π 1 h 9/2 ) ⊗ ( ν 2 f 5/2 )] 7 I=7 I=7 0 . 5 [( π 1 h 9/2 ) ⊗ ( ν 1 i 13/2 )] 10 I=10 I=10 0 . 0 116 118 120 122 124 126 N

  15. Changes in MS Charge Radii Voss et al. , 2013, Phys. Rev. Le. 111, 122501 & 2015, Phys. Rev. C 91, 044307 Light Manipulation & n-def. Francium Annika Voss Coc et al. ,1985, Phys. Le. B. 163, 66 (re-evaluated) EuNPC 2015 a) 0 . 00 | β 2 | = 0 . 20 0 . 15 0 . 10 0 . 0 − 0 . 1 δ � r 2 � N, 126 [fm 2 ] − 0 . 2 − 0 . 3 − 0 . 4 Pb gs Fr gs Fr m1 − 0 . 5 Fr m2 b) 0 . 01 ∆ [fm 2 ] 0 . 00 − 0 . 01 − 0 . 02 116 118 120 122 124 126 N

  16. Summary individual analysis Light Manipulation & n-def. Francium Annika Voss neutron-deficient Fr isotopes and isomers spectroscopy on atomic species EuNPC 2015 spectroscopy neutron-deficient Fr and neutron-rich Rb ◦ developed fast-frequency intensity modulation for collinear laser ◦ successfully demonstrated suppression of hyperfine pumping on ◦ rapid frequency switching further enhances the technique ◦ coincidence methods allow the PMT signal to be disentangled for ◦ techniques may be applied at all facilities pursuing collinear laser ◦ first direct and model-independent nuclear spin determination for ◦ g -factors suggest strong mixing of shell-model states for ground states ◦ δ ⟨ r 2 ⟩ mark onset of deformation around N = 119 in Fr

  17. ank you! Collaboration: (sorted by Number of Participants) Annika Voss Light Manipulation & n-def. Francium EuNPC 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend