random models of dynamical systems introduction to sde s
play

Random Models of Dynamical Systems Introduction to SDEs (5/5) - PowerPoint PPT Presentation

Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Random Models of Dynamical Systems Introduction to SDEs (5/5) 4GMAROM Fran cois Le Gland INRIA Rennes + IRMAR


  1. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Random Models of Dynamical Systems Introduction to SDE’s (5/5) 4GM–AROM Fran¸ cois Le Gland INRIA Rennes + IRMAR http://www.irisa.fr/aspi/legland/insa-rennes/ December 10, 2018 1 / 37

  2. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate 2 / 37

  3. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate consider the simpler equation ż t ż t X p t q “ X p 0 q ` b p X p s qq ds ` σ p X p s qq dB p s q 0 0 with a m –dimensional Brownian motion B “ p B p t q , t ě 0 q , and time–independent coefficients: ‚ a d –dimensional drift vector b p x q defined on R d ‚ a d ˆ m diffusion matrix σ p x q defined on R d global Lipschitz condition: there exists a positive constant L ą 0 such that for any x , x 1 P R d | b p x q ´ b p x 1 q| ď L | x ´ x 1 | } σ p x q ´ σ p x 1 q} ď L | x ´ x 1 | and linear growth condition (simple consequence in this case): there exists a positive constant K ą 0 such that for any x P R d | b p x q| ď K p 1 ` | x |q and } σ p x q} ď K p 1 ` | x |q 3 / 37

  4. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Strong vs. weak error objective: associated with a uniform subdivision 0 “ t 0 ă ¨ ¨ ¨ ă t k ă ¨ ¨ ¨ (with constant time–step h “ t k ´ t k ´ 1 ), design a numerical scheme ¯ X k that approximates the solution X p t k q , and provide an approximate continuous–time process ¯ X p t q (to be made precise later on) Definition the numerical scheme is strongly convergent of order α ą 0 if for any 0 ď t ď T X p t q| 2 u 1 { 2 ď C p T q h α t E | X p t q ´ ¯ Definition [approximation of moments] the numerical scheme is weakly convergent of order β ą 0 if for any regular enough real–valued function f and for any 0 ď t ď T | E r f p X p t qqs ´ E r f p ¯ X p t qqs | ď C p f , T q h β 4 / 37

  5. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Remark if a numerical scheme is strongly convergent of order α ą 0, then it is also weakly convergent of the same order α ą 0 (for a Lipschitz continuous function f ) indeed: if | f p x q ´ f p x 1 q| ď L | x ´ x 1 | for any x , x 1 P R d , then | E r f p X p t qqs ´ E r f p ¯ X p t qqs | “ | E r f p X p t qq ´ f p ¯ X p t qqs | ď E | f p X p t qq ´ f p ¯ X p t qq| ď L E | X p t q ´ ¯ X p t q| ď L t E | X p t q ´ ¯ X p t q| 2 u 1 { 2 ď L C p T q h α 5 / 37

  6. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Euler scheme special important case: Euler scheme same initial condition ¯ X 0 “ X p 0 q for k “ 0, and for any k ě 1 X k “ ¯ ¯ X k ´ 1 ` b p ¯ X k ´ 1 q p t k ´ t k ´ 1 q ` σ p ¯ X k ´ 1 q p B p t k q ´ B p t k ´ 1 qq and continuous–time approximation interpolating points ¯ X k at time instants t k X p t q “ ¯ ¯ X k ´ 1 ` b p ¯ X k ´ 1 q p t ´ t k ´ 1 q ` σ p ¯ X k ´ 1 q p B p t q ´ B p t k ´ 1 qq for any time t k ´ 1 ď t ď t k between two discretization times 6 / 37

  7. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Euler approximation seen as an Itˆ o process, with frozen coefficients on each interval of the subdivision: indeed, for any t k ´ 1 ď t ď t k ż t ż t X p t q “ ¯ ¯ b p ¯ σ p ¯ X k ´ 1 ` X p π p s qqq ds ` X p π p s qqq dB p s q t k ´ 1 t k ´ 1 and more generally for any t ě 0 ż t ż t X p t q “ ¯ ¯ b p ¯ σ p ¯ X p 0 q ` X p π p s qqq ds ` X p π p s qqq dB p s q 0 0 where X p π p s qq “ ¯ ¯ π p s q “ t k ´ 1 and X k ´ 1 if t k ´ 1 ď s ă t k there exists a positive constant M p T q , independent of the time–step h , such that X p t q| 2 ď M p T q 0 ď t ď T E | ¯ max 7 / 37

  8. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate 8 / 37

  9. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Euler scheme: strong error estimate Theorem 1 the Euler scheme is strongly convergent of order 1 2 , i.e. X p t q| 2 “ O p h q 0 ď t ď T E | X p t q ´ ¯ max 9 / 37

  10. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Proof for any time t k ´ 1 ď t ď t k between two discretization times, it holds ż t ż t X p t q “ X p t k ´ 1 q ` b p X p s qq ds ` σ p X p s qq dB p s q t k ´ 1 t k ´ 1 and (Euler approximation interpolating points ¯ X k at time instants t k ) X p t q “ ¯ ¯ X k ´ 1 ` b p ¯ X k ´ 1 q p t ´ t k ´ 1 q ` σ p ¯ X k ´ 1 q p B p t q ´ B p t k ´ 1 qq by difference, for any t k ´ 1 ď t ď t k ż t X p t q ´ ¯ X p t q “ X p t k ´ 1 q ´ ¯ r b p X p s qq ´ b p ¯ X k ´ 1 ` X k ´ 1 qs ds t k ´ 1 ż t r σ p X p s qq ´ σ p ¯ ` X k ´ 1 qs dB p s q t k ´ 1 10 / 37

  11. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate using the Itˆ o formula yields X p t q| 2 “ | X p t k ´ 1 q ´ ¯ | X p t q ´ ¯ X k ´ 1 | 2 ż t X p s qq ˚ r b p X p s qq ´ b p ¯ p X p s q ´ ¯ ` 2 X k ´ 1 qs ds t k ´ 1 ż t X p s qq ˚ r σ p X p s qq ´ σ p ¯ p X p s q ´ ¯ ` 2 X k ´ 1 qs dB p s q t k ´ 1 ż t X k ´ 1 q} 2 ds } σ p X p s qq ´ σ p ¯ ` t k ´ 1 11 / 37

  12. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate using the bound 2 u ˚ v ď | u | 2 ` | v | 2 , and taking expectation (assuming the stochastic integral is a (true, square–integrable) martingale), yields X p t q| 2 ď E | X p t k ´ 1 q ´ ¯ E | X p t q ´ ¯ X k ´ 1 | 2 ż t X p s q| 2 ds | X p s q ´ ¯ ` E t k ´ 1 ż t X k ´ 1 q| 2 ds | b p X p s qq ´ b p ¯ ` E t k ´ 1 ż t X k ´ 1 q} 2 ds } σ p X p s qq ´ σ p ¯ ` E t k ´ 1 12 / 37

  13. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate note that | b p X p s qq ´ b p ¯ X k ´ 1 q| ď | b p X p s qq ´ b p X p t k ´ 1 qq| ` | b p X p t k ´ 1 qq ´ b p ¯ X k ´ 1 q| ď L r| X p s q ´ X p t k ´ 1 q| ` | X p t k ´ 1 q ´ ¯ X k ´ 1 |s and similarly } σ p X p s qq ´ σ p ¯ X k ´ 1 q} ď L r| X p s q ´ X p t k ´ 1 q| ` | X p t k ´ 1 q ´ ¯ X k ´ 1 |s with two different contributions to the error ‚ discretization error at previous iteration ‚ modulus of continuity of the solution 13 / 37

  14. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate therefore X p t q| 2 ď p 1 ` 4 L 2 p t ´ t k ´ 1 qq E | X p t k ´ 1 q ´ ¯ E | X p t q ´ ¯ X k ´ 1 | 2 ż t ` 4 L 2 E | X p s q ´ X p t k ´ 1 q| 2 ds t k ´ 1 ż t X p s q| 2 ds | X p s q ´ ¯ ` E t k ´ 1 note that the modulus of continuity for the solution satisfies E | X p s q ´ X p t k ´ 1 q| 2 ď C p s ´ t k ´ 1 q hence X p t q| 2 ď p 1 ` 4 L 2 h q E | X p t k ´ 1 q ´ ¯ X k ´ 1 | 2 ` 4 L 2 C h 2 E | X p t q ´ ¯ ż t X p s q| 2 ds | X p s q ´ ¯ ` E t k ´ 1 14 / 37

  15. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate the Gronwall lemma yields X p t q| 2 ď E | X p t q ´ ¯ X k ´ 1 | 2 ` 4 L 2 C h 2 s exp t t ´ t k ´ 1 u ď rp 1 ` 4 L 2 h q E | X p t k ´ 1 q ´ ¯ introducing t k ´ 1 ď t ď t k E | X p t q ´ ¯ X p t q| 2 ε k “ max it holds ε k ď p 1 ` 4 L 2 h q exp t h u ε k ´ 1 ` 4 L 2 C h 2 exp t h u and by induction 4 L 2 C h 2 exp t h u p 1 ` 4 L 2 h q exp t h u ´ 1 rp 1 ` 4 L 2 h q exp t h us k ε k ď note that 4 L 2 C h 2 exp t h u 4 L 2 C h 2 p 1 ` 4 L 2 h q exp t h u ´ 1 “ 4 L 2 h ` p 1 ´ exp t´ h uq “ O p h q 15 / 37

  16. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate for any k “ 1 ¨ ¨ ¨ t T { h u , the following bound holds rp 1 ` 4 L 2 h q exp t h us k ď rp 1 ` 4 L 2 h q exp t h us t T { h u ď exp tp 1 ` 4 L 2 q T u therefore X p t q| 2 “ 0 ď t ď T E | X p t q ´ ¯ max k “ 1 ¨¨¨ t T { h u ε k max 4 L 2 C h 2 4 L 2 h ` p 1 ´ exp t´ h uq exp tp 1 ` 4 L 2 q T u “ O p h q ď l 16 / 37

  17. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate 17 / 37

  18. Stochastic differential equations Euler scheme: strong error estimate Euler scheme: weak error estimate Euler scheme: weak error estimate let T ě 0 be fixed (as in the PDE) and consider specifically a uniform subdivision of the form 0 “ t 0 ă ¨ ¨ ¨ ă t k ă ¨ ¨ ¨ ă t n “ T of the interval r 0 , T s (with constant time–step h “ T { n ) Theorem 2 under some additional technical assumptions (on the coefficients of the SDE and on the test function) the Euler scheme is weakly convergent of order 1, i.e. | E r f p X p T qqs ´ E r f p ¯ X p T qqs | “ O p h q even more E r f p X p T qqs ´ E r f p ¯ X p T qqs “ C p f , T q h ` O p h 2 q 18 / 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend