measuring a light dark matter neutralino mass at the ilc
play

Measuring a Light (Dark Matter) Neutralino Mass at the ILC Herbi - PowerPoint PPT Presentation

PHENO SYMPOSIUM, Madison, WI, May, 10 th , 2010 Measuring a Light (Dark Matter) Neutralino Mass at the ILC Herbi Dreiner Universit at Bonn & SCIPP, University of California, Santa Cruz . MSSM Neutralino Mixing W 3 , MSSM


  1. PHENO SYMPOSIUM, Madison, WI, May, 10 th , 2010 Measuring a Light (Dark Matter) Neutralino Mass at the ILC Herbi Dreiner Universit¨ at Bonn & SCIPP, University of California, Santa Cruz .

  2. MSSM Neutralino Mixing W 3 , ˜ • MSSM Neutralino Mass Mixing Matrix in ( ˜ B, ˜ H 1 , ˜ H 2 ) basis   M 1 0 − M z cos β sin θ w M z sin β sin θ w 0 M 2 M z cos β cos θ w − M z sin β cos θ w   M 0 =   − M z cos β sin θ w M z cos β cos θ w 0 µ     M z sin β sin θ w − M z sin β cos θ w µ 0 χ 0 • What do we know about the Mass of ˜ 1 ?

  3. Experimental Search at LEP > • Chargino Search: M ˜ 1 > 94 GeV ⇒ | µ | , M 2 ∼ 100 GeV χ ± • Higgs search: tan β > ∼ 1 . 5 > 3 tan 2 θ w M 2 M 1 = 5 • Assume: ⇒ M 1 ∼ 50 GeV > • Insert into Neutralino Mass Matrix: ⇒ M ˜ ∼ 46 GeV χ 0 1 • Now drop above assumption on M 1 , M 2

  4. Massless Neutralino M 2 M 2 Z sin(2 β ) s 2 w • Set det( M 0 )=0 ⇒ M 1 = µM 2 − M 2 Z sin(2 β ) c 2 w • Choose: { M 2 , µ, tan β } ∃ M 1 : M χ 0 1 = 0 ⇒ • Some fine-tuning required M 1 ≈ M 2 Z sin(2 β ) s 2 � � � � 10 150 GeV w ≈ 2 . 5 GeV µ tan β µ • = ⇒ M χ 0 1 = 0 consistent in MSSM

  5. M χ 0 1 = 0 consistent with all lab data • Invisible Z 0 –width • e + e − − → χ 0 1 χ 0 1 γ • e + e − − Z 0 → q ¯ → χ 0 2 χ 0 χ 0 2 → Z 0 χ 0 1 ; 1 ; q • Precision Observables ( δ Γ inv , δ Γ Z , M W , δa µ , EDM ′ s) • Monojets • Rare Meson Decays • Supernova Cooling > • Dark Matter: Lee–Weinberg bound: M χ 0 ∼ 6 GeV 1 < Cowsik–McClellan bound: M χ 0 ∼ 0 . 7 eV 1

  6. Publications • A Supersymmetric solution to the KARMEN time anomaly D. Choudhury, HD, P. Richardson, Subir Sarkar Phys. Rev. D61:095009,2000; e-Print: hep-ph/9911365 • Supernovae and light neutralinos: SN1987A bounds on supersymmetry revisited HD, C. Hanhart, U. Langenfeld, D.R. Phillips Phys. Rev. D68:055004,2003; e-Print: hep-ph/0304289 • Discovery potential of radiative neutralino production at the ILC HD, O. Kittel, U. Langenfeld Phys. Rev. D74:115010,2006; e-Print: hep-ph/0610020 • Mass Bounds on a Very Light Neutralino HD, S. Heinemeyer, O. Kittel, U. Langenfeld, A.M. Weber, G. Weiglein Eur.Phys.J.C62,2009 ; e-Print: arXiv:0901.3485 • Rare Meson Decays to a Light neutralino HD, S. Grab, D. Koschade, M. Kr¨ amer, U. Langenfeld, B. O’Leary Phys. Rev. D80:035018,2009

  7. Measuring a Light Neutralino Mass at the ILC Work in progress with Bonn group: John Conley, HD, Peter Wienemann, Karina Williams • Consider the process: e − e − e − χ 0 ˜ 1 R χ 0 + s–channel 1 e + e + e + ˜ R χ 0 1 • Measure e ± energies = ⇒ determine M χ 0 1 > • Earlier work by Uli Martyn (DESY): M χ 0 ∼ 95 GeV 1 • How well does this work for light neutralinos?

  8. Electron Energy Distribution Lepton Energy; m Χ � 96 GeV 2000 1500 1000 500 0 0 50 100 150 200 • Electron energy distribution is flat, with sharp cut–offs: E ± eR = 143 GeV and √ s = 400 GeV • Here chosen: SPS1a: M ˜

  9. Simple Kinematics • θ 0 : angle between � p ( e ) in slepton rest–frame and � p (˜ e ) M 2 √ s   � 1 − 4 M 2 χ 0 ˜ e 1 . E e =  1 −  (1 + β ˜ e cos θ 0 ) , β ˜ e =   M 2 4 s e ˜ • Max/Min Electron energy: E ± for cos θ 0 = ± 1 • Solve for the SUSY Masses � E + E − � e = √ s 1 − E + + E − M ˜ , M χ 0 1 = M ˜ √ s/ 2 e E + + E − • Measure E + and E − : thus determine M χ 0 1

  10. Neutralino Mass Sensitivity M 2 √ s   � 1 − 4 M 2 χ 0 ˜ e 1 . E ± =  1 −  (1 ± β ˜ e ) , β ˜ e =   M 2 4 s e ˜ • Detailed ILC study by Uli Martyn for heavy neutralinos: ∆ M χ 0 1 < 0 . 2% M χ 0 1 M 2 χ 0 1 • E ± depends on = ⇒ Expect less sensitivity for: M 2 ˜ e M χ 0 1 ≪ M ˜ or as M χ 0 1 − → 0 e

  11. Lepton Energy; m Χ � 10 GeV 2000 1500 1000 500 0 0 50 100 150 200 Lepton Energy; m Χ � 5 GeV 2000 1500 1000 500 0 0 50 100 150 200

  12. Work in Progress: Simple Simulation • Do not consider full detector simulation. Instead simplified analysis. e + µ + e − µ − • Consider ˜ R ˜ R – and ˜ R ˜ R –Production e + e − • ˜ R ˜ R dominant • √ s = 500 GeV • Beam polarisations ( P e − , P e + ) = (+80% , − 60%) √ • Include Beam Strahlung: √ s < √ s s ′ − → This smears out the E ± –edges

  13. Further Details of Simulation • Approximate detector resolutions � � 1 1 · 10 − 4 GeV − 1 ∆ = (tracker) p T ∆ E 0 . 166 = ⊕ 0 . 011 (ECAL) � E E/ GeV • Smear electron energy according to minimum of the two • For muons always choose momentum resolution • This further smoothes out the edges • We then fit the edges using basically the convolution of a Gaussian and an upward or downward step function.

  14. Fit Functions � erf( E − ˆ �  E − 1 E < ˆ √ ) + 1 : E −  2 σ −  2   1 f − ( E ) = � � erf( E − ˆ E − 1 E > ˆ  ) + 1 : E − √  2 σ −  2  2 � �  erfc( E − ˆ E − 1 E < ˆ √ ) : E −  2 σ −  2   1 f + ( E ) = � erfc( E − ˆ � E − 1 E > ˆ  ) : √ E −  2 σ −  2  2 � x 2 0 e − t 2 dt erf( x ) = √ π erfc( x ) = 1 − erf( x ) • σ 1 � = σ 2 because of asymmetric beam strahlung

  15. Results • Reproduced detailed detector study by Uli Martyn at M χ 0 1 ≈ 96 GeV and √ s = 400 GeV to within ± 30% • Used this as a systematic error for our analysis of light neutralinos

  16. precision (GeV) precision (GeV) ~ ~ + + - + e e e e s = 500 GeV → 1.2 1.2 R R -1 L = 250 fb 1 1 0.8 0.8 0 0 1 1 ∼ ∼ χ χ m m 0.6 0.6 m = 200 GeV ~ e R 0.4 0.4 0.2 0.2 m = 100 GeV ~ e R 0 0 0 0 10 10 20 20 30 30 40 40 50 50 m m (GeV) (GeV) ∼ ∼ 0 0 χ χ • √ s = 500 GeV 1 1 � L dt = 250 fb − 1 • Integrated Luminosity:

  17. Summary & Conclusions • A massless neutralino is consistent with all data • For M ˜ e R = 100 GeV can measure M χ 0 1 down to less than 1 GeV • For M ˜ e R = 200 GeV can measure M χ 0 1 down to about 2 GeV • Implications for Dark Matter

  18. .

  19. 95% CL contours 95% CL contours 100 12 10 80 8 60 m χ 0 1 m χ 0 1 6 40 4 20 2 0 0 142.0 142.5 143.0 143.5 144.0 142.4 142.6 142.8 143.0 143.2 143.4 m ˜ m ˜ e R e R

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend