could a line
play

Could a line betray the mass of Light Dark Matter? C. Boehm, J. - PowerPoint PPT Presentation

Could a line betray the mass of Light Dark Matter? C. Boehm, J. Orloff, P. Salati Cern, Clermont, Annecy astro-ph/0607437 Light Dark Matter to Outline Why Dark Matter? Why not Light DM? 511 keV signal from Galactic Center:


  1. Could a � line betray the mass of Light Dark Matter? C. Boehm, J. Orloff, P. Salati Cern, Clermont, Annecy astro-ph/0607437 Light Dark Matter to ��

  2. Outline • Why Dark Matter? Why not Light DM? • 511 keV signal from Galactic Center: Why LDM? • Cross check: monochromatic � line at m dm • Detectability Light Dark Matter to �� J. Orloff 2

  3. Why Dark Matter? Light Dark Matter to �� J. Orloff 3

  4. Why Dark Matter? Short: (googling Dark Matter 2007) ask Meryl Streep! Light Dark Matter to �� J. Orloff 3

  5. Why Dark Matter? Short: (googling Dark Matter 2007) ask Meryl Streep! Light Dark Matter to �� Li ht Dark Matter J. Orloff f 3

  6. Why Dark Matter? Short: (googling Dark Matter 2007) ask Meryl Streep! Light Dark Matter to �� Li ht Dark Matter J. Orloff f 3

  7. Why Dark Matter? Light Dark Matter to �� J. Orloff 4

  8. Why Dark Matter? • Need Cold DM with Ω DM = 0 . 24 on all scales: Light Dark Matter to �� J. Orloff 4

  9. Why Dark Matter? • Need Cold DM with Ω DM = 0 . 24 on all scales: DM halo • Galaxies’ flat rotation curves Light Dark Matter to �� J. Orloff 4

  10. Why Dark Matter? • Need Cold DM with Ω DM = 0 . 24 on all scales: DM halo • Galaxies’ flat rotation curves • Clusters’ temp. distributions & collisions Clowe et al. 2006 Cold dark lensing matter X gas “Bullet” cluster 1E 0657-56 Light Dark Matter to �� J. Orloff 4

  11. Why Dark Matter? • Need Cold DM with Ω DM = 0 . 24 on all scales: DM halo • Galaxies’ flat rotation curves • Clusters’ temp. distributions & collisions • Structure formation and CMB WMAP astro-ph/0603449 Light Dark Matter to �� Light Dark Matter to �� J. Orloff 4 4

  12. Why Dark Matter? • Need Cold DM with Ω DM = 0 . 24 on all scales: DM halo • Galaxies’ flat rotation curves • Clusters’ temp. distributions & collisions • Structure formation and CMB • Nucleosynthesis + CMB: Ω b = 0 . 04 ≪ Ω DM ⇒ DM is non-baryonic DM i b WMAP astro-ph/0603449 Light Dark Matter to �� Light Dark Matter to �� J. Orloff 4 4

  13. Why Dark Matter? • Need Cold DM with Ω DM = 0 . 24 on all scales: DM halo • Galaxies’ flat rotation curves • Clusters’ temp. distributions & collisions • Structure formation and CMB • Nucleosynthesis + CMB: Ω b = 0 . 04 ≪ Ω DM ⇒ DM is non-baryonic DM i b WMAP astro-ph/0603449 • DM particle: major phenomenological nomenol ogical excuse for physics BSM! ! (since � DM Direct Detection excl. & � oscill.) n excl. & � � oscill.) ⇒ “vanilla” SUSY DM Light Dark Matter to �� Light Dark Matter to �� J. Orloff 4 4

  14. Why Dark Matter? • Need Cold DM with Ω DM = 0 . 24 on all scales: DM halo • Galaxies’ flat rotation curves • Clusters’ temp. distributions & collisions • Structure formation and CMB • Nucleosynthesis + CMB: Ω b = 0 . 04 ≪ Ω DM ⇒ DM is non-baryonic DM i b WMAP astro-ph/0603449 • DM particle: major phenomenological nomenol ogical excuse for physics BSM! ! (since � DM Direct Detection excl. & � oscill.) n excl. & � � oscill.) ⇒ “vanilla” SUSY DM • Gravity modifications? Even less conservative! (& contrived) Light Dark Matter to �� Light Dark Matter to �� J. Orloff 4 4

  15. Why not Light DM? • Honest poll in this room: “Who would order new MeV particles?” • More serious: Lee-Weinberg bound ? Ω dm < 1 ⇒ m dm > 2GeV σ ann v ∼ m 2 dm G 2 Only holds for weak-like cross-sections: F ( ∼ 1 / Ω) • For other behaviors or G F , relic density can be OK for scalar DM with: • m dm > 1MeV (otherwise nucleosynthesis problems) • m dm < 100 MeV (otherwise unseen � ’s from � 0 ) • Involves light gauge boson U , or mirror fermions F , or both dm e v dm e 2 U F and/or v 2 dm dm e e σv ∼ v 2 q 2 Udm q 2 Ue m 2 dm /m 4 dm m e U σv ∼ C 4 m − 2 F ⇒ Intriguing possibility (Boehm, Fayet hep-ph/0305261) Light Dark Matter to �� J. Orloff 5

  16. 511 keV � ‘s from Galactic Center 10 -4 10 -3 10 -2 photons/cm 2 /s/sr Nothing in the ---- ---- galactic disk!!! 5°= 1kpc = galactic bulge SPI/INTEGRAL, 2003-2005 • 1.6 10 -3 photons/cm 2 /s from the bulge, with energy 511 ± 1 keV • ⇒ positronium at rest annihilating into 2 photons Light Dark Matter to �� J. Orloff 6

  17. Are these e + “Dark”? “Found a 0.5 MeV radiation excess? Do your Nuclear Physics right!” However: • All known potential astrophysical sources (e.g. hypernovae) more frequent in the disk than in the (quiescent, old stars) bulge. • Known e + sources also have known intense gamma lines (unseen) • Diffuse steady signal requires at least 8(?) steady(?) point sources On the other hand, the DM density • must increase in the bulge, and would give a steady, diffuse signal • fits a reasonable profile: (Ascasibar a-ph/0507142) ρ NF W ( r ) ∼ 1 /r • requires both mirror fermions F (e + signal) σv ∼ C 4 m − 2 F σv ∼ v 2 q 2 Udm q 2 Ue m 2 dm /m 4 and U boson (relic density too large otherwise) U ⎧ m F > 100GeV ⎨ with: m dm ∼ 1 → 100MeV < m U q dmU q eU ∼ 10 − 6 (for m U ∼ m dm ) ⎩ Light Dark Matter to �� J. Orloff 7

  18. Light DM Window • Upper limits on m dm : φ γ cont ( dm + dm → e + e − γ ) > φ obs. ( . 5 → 5 MeV ) • FSR: � m dm < 20 MeV (Beacom, a-ph/0409403) or m dm < 35 MeV w. better cross-section (Boehm, hep-ph/0606058) • In flight annihilation: some e + can annihilate before stopping and exceed • error bars (???) on continuum � m dm < 3MeV (Beacom, a-ph/0512411) , • continuum itself � m dm < 20MeV • Lower limits on m dm : • Nucleosynthesis disturbed by annihilation � m dm > 2MeV (Serpico, Raffelt, a-ph/0403417) • Neutrinos from SN1987A too cold (Fayet, Sigl, hep-ph/0602169) � m dm > 10MeV if it couples to neutrinos (not necessary) ⇒ 2MeV < m dm < 20 MeV Light Dark Matter to �� J. Orloff 8

  19. The story so far • There is an intense positronium annihilation line from galactic center • No easy astrophysical explanation • ⇒ Imagine annihilation: LDM+LDM � e + e - • Produced positrons radiate energy locally (in 1pc) , then (most) find an e - to form positronium and annihilate (25%) into 511 keV gammas. Requires peculiar particle models, with special ingredient/parameters: what would it take to convince (and believe) this is the real story? If DM annihilation produces many e + e - pairs, it must guarantee a minimum number of unambiguous monochromatic �’s ⇒ how much? ⇔ Is there a chance of proving this scenario? Light Dark Matter to �� J. Orloff 9

  20. ⇒ X-check: e + e - production • For heavy m F >>m dm,e , L = ¯ ψ F ( c R P L + c L P R ) ψ e φ dm + h.c reduces to effective interaction heavy F exchange c ∗ R,L e e dm dm + O (1 /m 2 ∼ F ) F a + ibγ 5 dm e dm e m F c L,R 1 dm φ dm ¯ L eff = φ ∗ ψ e ( a + ibγ 5 ) ψ e ; a + ib = c ∗ L c R . m F β e = 2 10 − 30 � m dm � 2 a 2 β 2 e + b 2 � � c m 3 / s σ 511 v r = 4 πm 2 MeV SPI F � e /m 2 1 − m 2 β e = dm Light Dark Matter to �� J. Orloff 10

  21. ⇒ X-check: � line at m dm • 2x3 box diagrams: c ∗ c L,R c L,R R,L F e dm e dm dm F + + e e F F e F dm e dm F dm c ∗ c L,R c ∗ R,L R,L � • Each superficially but gauge invariance requires 2 d 4 k/k 4 � d 4 k/k 6 < 1 /m 2 external momenta ⇒ and 1/m F expansion OK F m F 1 = 0 , ( q 1 + q 2 ) 2 = 4 m 2 C 0 ( q 2 dm , q 2 2 = 0 , m 2 e , m 2 e , m 2 e ) e � d 4 k dm + O (1 /m 2 1 F ) = e ∼ (( k + q 1 ) 2 − m 2 e ) ( k 2 − m 2 e ) (( k − q 2 ) 2 − m 2 iπ 2 e ) • a + ibγ 5 dm � 1 1 dx e x ln(1 − x (1 − x )4 m 2 dm /m 2 m F = e − iε F ) 4 m 2 0 dm α 2 m 2 dm | 2 + a 2 | 1 + 2 C 0 ( m 2 e b 2 | 2 C 0 m 2 e − m 2 dm ) | 2 � � σ γγ v r = × (2 π ) 3 m 2 m 2 F dm Light Dark Matter to �� J. Orloff 11

  22. X-check: � line / e + e - dm ) C 0 | 2 + b 2 | 2 m 2 α 2 m 2 a 2 | 1 + 2 ( m 2 e − m 2 dm C 0 | 2 = σ γγ η . e = 2 π 2 β e m 2 a 2 β 2 e + b 2 σ 511 dm Boehm, Orloff, Salati Boehm, Orloff, Salati b=0 η = σ γγ /σ e + e − 10 � 4 a=0 10 � 6 10 � 2 10 � 1 10 0 10 1 10 2 m dm − m e (MeV) Light Dark Matter to �� J. Orloff 12

  23. X-check: � line / e + e - dm ) C 0 | 2 + b 2 | 2 m 2 α 2 m 2 a 2 | 1 + 2 ( m 2 e − m 2 dm C 0 | 2 = σ γγ η . e = 2 π 2 β e m 2 a 2 β 2 e + b 2 σ 511 dm • Not vanishing � guaranteed signal, given the known e + e - signal • Enhancements? • ? But dangerous for nucleosynthesis ! m dm ≈ m e ⇔ β e ≈ 0 • More heavier particles, like tau, in loop? η ( m τ ≫ m dm ) ∼ m 2 dm / ( m 2 F m 2 τ ) Not much: m 2 e /m 2 (despite prefactor) dm ⇒ will be relevant only for couplings c L,R scaling like Yukawas l f Γ e + e − ≈ α 2 m 2 Γ γγ • Kasuya (a-ph/0602296) estimate dm η K = 2 π 2 m 2 e β 3 e ( for moduli decay ): overestimates by 1000 (!!!) at 10MeV � (wrongly) concludes detectability in near future Light Dark Matter to �� J. Orloff 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend