calculus 1120 class 44
play

Calculus 1120, Class 44 Dan Barbasch May 4, 2012 Dan Barbasch - PowerPoint PPT Presentation

Calculus 1120, Class 44 Dan Barbasch May 4, 2012 Dan Barbasch Calculus 1120, Class 44 May 4, 2012 1 / 1 ( x ) ( 1) n x 2 n +1 ( x ) = (2 n + 1) n ! . n =0 For x > 0 this is an alternating series. By the Error Estimate for


  1. Calculus 1120, Class 44 Dan Barbasch May 4, 2012 Dan Barbasch Calculus 1120, Class 44 May 4, 2012 1 / 1

  2. Φ( x ) ∞ ( − 1) n x 2 n +1 � Φ( x ) = (2 n + 1) n ! . n =0 For x > 0 this is an alternating series. By the Error Estimate for Alternating Series, | S − s n | ≤ a n +1 , � n � ( − 1) i x 2 i +1 x 2 n +3 � � � � Φ( x ) − � ≤ � � (2 i + 1) i ! (2 n + 3)( n + 1)! � � i =0 For example Φ(1) = 1 + − 1 5 · 2! + − 1 1 1 3 + 7 · 3! + 9 · 4! + . . . . So Φ(1) ≈ 1 − 1 3 + 1 42 , and Φ(1) ≈ 1 − 1 1 3 + 1 10 − 1 10 with error less than 42 1 with error less than 216 . Dan Barbasch Calculus 1120, Class 44 May 4, 2012 2 / 1

  3. Error Estimates 1 Trapezoidal Rule, Simpson’s Rule, Left/Right Endpoint Rule 2 Alternating Series 3 Taylor’s formula 4 Improper Integrals/Comparison Test 5 Integral Test Dan Barbasch Calculus 1120, Class 44 May 4, 2012 3 / 1

  4. Erf ( x ) Question: What about Φ( ∞ ) = lim x →∞ Φ( x )? How large do we need to take x to have an error less than say 10 − 2 ? Answer: We do it in two steps. First we find an A > 0 so that the error betwen Φ( ∞ ) and Φ( A ) is less than 1 / 200 , then we find n so that the Taylor polynomial P n ( A ) approximates Φ( A ) by less than 1 / 200 . Together the error will be less than 1 / 100 . � ∞ � ∞ e − t 2 dt ≤ e − t dt = e − A . | Φ( ∞ ) − Φ( A ) | = A A So we can make this error less than 1 / 200 by taking A > ln 200 say A ≥ 6 . Dan Barbasch Calculus 1120, Class 44 May 4, 2012 4 / 1

  5. Erf ( x ) We now check how many terms we need from the series: � n � ( − 1) i 6 2 i +1 6 2 n +3 1 � � � � Φ(6) − � ≤ (2 n + 3)( n + 1)! ≤ � � � (2 i + 1) i ! � 200 i =0 Plug in values of n until you get below 1 / 200 . For this to be justified, you need to verify the conditions for the alternating series test. I found that you need n ≥ 96. Extra Credit (harder): Verify that the conditions of the alternating series x 2 n +1 test hold. Precisely show that for a fixed x > 0 , the terms (2 n + 1) n ! are decreasing, and go to 0. May depend on the value for x . The terms may increase for a while before decreasing. Dan Barbasch Calculus 1120, Class 44 May 4, 2012 4 / 1

  6. Erf ( x ) √ π The actual value you are estimating is 2 . Review of Volumes as Integrals � b 1 Slices: V = a A ( x ) dx . � b a π [ r 2 ( x ) 2 − r 1 ( x ) 2 ] dx 2 Washers: V = � b 3 Shells: V = a 2 π r ( x ) h ( x ) dx . Problem: Compute the volume obtained by rotating the region below y = e − x 2 , to the right of x = 0, and above the x − axis, about the y − axis. � ∞ xe − x 2 dx . Answer: V = 2 π 0 A � A � xe − x 2 dx = − e − x 2 � 2 − e − A 2 � 1 → 1 � = − 2 as A → ∞ . � 2 2 � 0 � 0 So V = 2 π/ 2 = π . Dan Barbasch Calculus 1120, Class 44 May 4, 2012 4 / 1

  7. Erf ( x ) Problem: Compute the same volume using slices perpendicular to the x − axis. Answer: The axis perpendicular to the xy − plane is z : The region is below the surface y = e − ( x 2 + z 2 ) . Dan Barbasch Calculus 1120, Class 44 May 4, 2012 4 / 1

  8. Erf ( x ) So the slice at x is the region 0 ≤ y ≤ e − ( x 2 + z 2 ) . The volume is � ∞ �� ∞ � ∞ e − x 2 �� ∞ � � e − z 2 dz e − ( x 2 + z 2 ) dz V = dx = dx = −∞ −∞ −∞ −∞ �� ∞ � 2 e − t 2 dt = . −∞ Putting the two together, � ∞ e − t 2 dt = √ π. −∞ √ π � ∞ e − t 2 dt = We conclude . 2 0 Dan Barbasch Calculus 1120, Class 44 May 4, 2012 4 / 1

  9. Erf ( x ) � x 2 e − t 2 dt . √ π The Error function Erf ( x ) is defined to be Erf ( x ) = 0 Problem: Graph this function. � x Fundamental Theorem of Calculus: If F ( x ) = a f ( t ) dt , then F ′ ( x ) = f ( x ). So Erf ( x ) ′ = √ π e − x 2 , and Erf ( x ) (2) = − 4 √ π xe − x 2 . The function is 2 increasing, concave up for x ≤ 0 and concave down for x ≥ 0 . Furthermore lim x →∞ Erf ( x ) = 1, and Erf ( − x ) = − Erf ( x ), so also lim x →−∞ Erf ( x ) = − 1 . Dan Barbasch Calculus 1120, Class 44 May 4, 2012 4 / 1

  10. Erf ( x ) 1 2 e − 1 2 ( x − µ σ ) Normal Distribution: N ( µ, σ ) = √ . 2 πσ The normal distribution is considered the most prominent distribution in √ statistics. The 2 π makes it so that � ∞ � ∞ √ e − x 2 2 dx = N ( µ, σ )( x ) dx = 1 ⇔ 2 π. −∞ −∞ Dan Barbasch Calculus 1120, Class 44 May 4, 2012 4 / 1

  11. Extra Credit � ∞ dx x 2 (1 + e x ) . 1 −∞ � 1 cos t lim dt . x → 0 + x 2 t 2 x ∞ ln n � ln ln n . 3 n =2 Arctan n lim √ n . 4 n →∞ � 3 dt 100 + 2 t . 5 Dan Barbasch Calculus 1120, Class 44 May 4, 2012 5 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend