r systems
play

R -systems Pavel Galashin MIT galashin@mit.edu AMS Joint Meeting, - PowerPoint PPT Presentation

R -systems Pavel Galashin MIT galashin@mit.edu AMS Joint Meeting, San Diego, CA, January 13, 2018 Joint work with Pavlo Pylyavskyy Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 1 / 23 Pavel Galashin (MIT) R -systems San Diego,


  1. R -systems Pavel Galashin MIT galashin@mit.edu AMS Joint Meeting, San Diego, CA, January 13, 2018 Joint work with Pavlo Pylyavskyy Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 1 / 23

  2. Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 2 / 23

  3. Part 1: Definition

  4. A system of equations Let G = ( V , E ) be a strongly connected digraph . c ( c + d ) d ( c + d ) b c a ac d bc X X ′ Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 4 / 23

  5. A system of equations Let G = ( V , E ) be a strongly connected digraph . c ( c + d ) d ( c + d ) b c a ac d bc X X ′ Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 4 / 23

  6. A system of equations Let G = ( V , E ) be a strongly connected digraph . c ( c + d ) d ( c + d ) b c b ′ c ′ a ac d a ′ bc d ′ X X ′ Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 4 / 23

  7. A system of equations Let G = ( V , E ) be a strongly connected digraph . c ( c + d ) d ( c + d ) b c b ′ c ′ a ac d bc a ′ d ′ X X ′ � − 1 � � � �� 1 X v X ′ ∀ v ∈ V , v = X w X ′ u v → w u → v Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 4 / 23

  8. A system of equations Let G = ( V , E ) be a strongly connected digraph . c ( c + d ) d ( c + d ) b c a ac d bc X X ′ � − 1 � � � �� 1 ∀ v ∈ V , X v X ′ v = X w X ′ u v → w u → v Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 4 / 23

  9. A system of equations Let G = ( V , E ) be a strongly connected digraph . c ( c + d ) d ( c + d ) b c a ac d bc X X ′ � − 1 � � � �� 1 X v X ′ ∀ v ∈ V , v = X w X ′ u v → w u → v � − 1 � 1 1 d · ac = ( a ) c ( c + d ) + d ( c + d ) Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 4 / 23

  10. Solution Theorem (G.-Pylyavskyy, 2017) Let G = ( V , E ) be a strongly connected digraph. Then there exists a birational map φ : P V ��� P V such that X , X ′ ∈ P V give a solution X ′ = φ ( X ) . ⇐ ⇒ Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 5 / 23

  11. Periodic examples (exercise) b a c b g c a f d e e f d Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 6 / 23

  12. Arborescence formula b c b c b c a a a d d d wt = ad 2 wt = acd wt = abd b c b c b c a a a d d d wt = bd 2 wt = abc wt = bcd Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 7 / 23

  13. Map Cluster Cluster Integrable Integrable LP algebras algebras algebras systems systems Zamolodchikov Superpotential & R-systems R-systems periodicity Mirror symmetry Birational Birational Birational Geometric rowmotion rowmotion toggling RSK Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 8 / 23

  14. Map Cluster Cluster Integrable Integrable LP algebras algebras algebras systems systems Zamolodchikov Zamolodchikov Superpotential & R-systems R-systems periodicity periodicity Mirror symmetry Birational Birational Birational Birational Geometric Geometric rowmotion rowmotion toggling toggling RSK RSK Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 9 / 23

  15. Birational rowmotion ⊆ R -systems ˆ ˆ ˆ 1 1 1 ˆ ˆ ˆ 0 0 0 P Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 10 / 23

  16. Birational rowmotion ⊆ R -systems ˆ ˆ ˆ ˆ 1 1 1 1 ˆ ˆ ˆ ˆ 0 0 0 0 ˆ P P Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 10 / 23

  17. Birational rowmotion ⊆ R -systems ˆ ˆ ˆ ˆ 1 1 1 1 ˆ ˆ ˆ ˆ 0 0 0 0 ˆ P P G ( P ) Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 10 / 23

  18. Birational rowmotion ⊆ R -systems ˆ ˆ ˆ 1 1 1 ˆ ˆ ˆ 0 0 0 ˆ P P G ( P ) Proposition (G.-Pylyavskyy, 2017) Birational rowmotion on P = R-system associated with G ( P ) . Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 10 / 23

  19. Part 2: Singularity confinement

  20. Map Cluster Cluster Cluster Integrable Integrable Integrable LP algebras LP algebras algebras algebras algebras systems systems systems Zamolodchikov Superpotential & R-systems R-systems periodicity Mirror symmetry Birational Birational Birational Geometric rowmotion rowmotion toggling RSK Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 12 / 23

  21. The Laurent phenomenon ατ n +1 τ n +3 + βτ 2 Somos-4 sequence: τ n +4 = n +2 . τ n Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 13 / 23

  22. The Laurent phenomenon ατ n +1 τ n +3 + βτ 2 Somos-4 sequence: τ n +4 = n +2 . τ n Theorem (Fomin-Zelevinsky, 2002) For each n > 4 , τ n is a Laurent polynomial in α, β, τ 1 , τ 2 , τ 3 , τ 4 . Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 13 / 23

  23. The Laurent phenomenon ατ n +1 τ n +3 + βτ 2 Somos-4 sequence: τ n +4 = n +2 . τ n Theorem (Fomin-Zelevinsky, 2002) For each n > 4 , τ n is a Laurent polynomial in α, β, τ 1 , τ 2 , τ 3 , τ 4 . Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 13 / 23

  24. Singularity confinement Consider a mapping of the plane ( x n − 1 , x n ) �→ ( x n , x n +1 ) given by substitute x n = τ n +1 τ n − 1 x n +1 = α x n + β n . τ 2 x n − 1 x 2 n Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 14 / 23

  25. Singularity confinement Consider a mapping of the plane ( x n − 1 , x n ) �→ ( x n , x n +1 ) given by substitute x n = τ n +1 τ n − 1 x n +1 = α x n + β n . τ 2 x n − 1 x 2 n x 3 = α x 2 + β x 1 x 2 2 Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 14 / 23

  26. Singularity confinement Consider a mapping of the plane ( x n − 1 , x n ) �→ ( x n , x n +1 ) given by substitute x n = τ n +1 τ n − 1 x n +1 = α x n + β n . τ 2 x n − 1 x 2 n x 3 = α x 2 + β x 1 x 2 2 x 4 = ( β x 1 x 2 2 + α 2 x 2 + αβ ) x 1 x 2 ( α x 2 + β ) 2 Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 14 / 23

  27. Singularity confinement Consider a mapping of the plane ( x n − 1 , x n ) �→ ( x n , x n +1 ) given by substitute x n = τ n +1 τ n − 1 x n +1 = α x n + β n . τ 2 x n − 1 x 2 n x 3 = α x 2 + β x 1 x 2 2 x 4 = ( β x 1 x 2 2 + α 2 x 2 + αβ ) x 1 x 2 ( α x 2 + β ) 2 x 5 = ( αβ x 2 1 x 3 2 + ··· + β 3 )( α x 2 + β ) ( β x 1 x 2 2 + α 2 x 2 + αβ ) 2 x 1 Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 14 / 23

  28. Singularity confinement Consider a mapping of the plane ( x n − 1 , x n ) �→ ( x n , x n +1 ) given by substitute x n = τ n +1 τ n − 1 x n +1 = α x n + β n . τ 2 x n − 1 x 2 n x 3 = α x 2 + β x 1 x 2 2 x 4 = ( β x 1 x 2 2 + α 2 x 2 + αβ ) x 1 x 2 ( α x 2 + β ) 2 x 5 = ( αβ x 2 1 x 3 2 + ··· + β 3 )( α x 2 + β ) ( β x 1 x 2 2 + α 2 x 2 + αβ ) 2 x 1 x 6 = ( α 3 β x 2 1 x 4 2 + ··· + αβ 4 )( β x 1 x 2 2 + α 2 x 2 + αβ ) ( αβ x 2 1 x 3 2 + ··· + β 3 ) 2 x 2 Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 14 / 23

  29. Singularity confinement Consider a mapping of the plane ( x n − 1 , x n ) �→ ( x n , x n +1 ) given by substitute x n = τ n +1 τ n − 1 x n +1 = α x n + β n . τ 2 x n − 1 x 2 n x 3 = α x 2 + β x 1 x 2 2 x 4 = ( β x 1 x 2 2 + α 2 x 2 + αβ ) x 1 x 2 ( α x 2 + β ) 2 x 5 = ( αβ x 2 1 x 3 2 + ··· + β 3 )( α x 2 + β ) ( β x 1 x 2 2 + α 2 x 2 + αβ ) 2 x 1 x 6 = ( α 3 β x 2 1 x 4 2 + ··· + αβ 4 )( β x 1 x 2 2 + α 2 x 2 + αβ ) ( αβ x 2 1 x 3 2 + ··· + β 3 ) 2 x 2 x 7 = ( αβ 3 x 4 1 x 6 2 + ··· + β 6 x 2 )( αβ x 2 1 x 3 2 + ··· + β 3 ) x 1 x 2 ( α 3 β x 2 1 x 4 2 + ··· + αβ 4 ) 2 Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 14 / 23

  30. Singularity confinement Consider a mapping of the plane ( x n − 1 , x n ) �→ ( x n , x n +1 ) given by substitute x n = τ n +1 τ n − 1 x n +1 = α x n + β n . τ 2 x n − 1 x 2 n x 3 = α x 2 + β x 1 x 2 2 x 4 = ( β x 1 x 2 2 + α 2 x 2 + αβ ) x 1 x 2 ( α x 2 + β ) 2 x 5 = ( αβ x 2 1 x 3 2 + ··· + β 3 )( α x 2 + β ) ( β x 1 x 2 2 + α 2 x 2 + αβ ) 2 x 1 x 6 = ( α 3 β x 2 1 x 4 2 + ··· + αβ 4 )( β x 1 x 2 2 + α 2 x 2 + αβ ) ( αβ x 2 1 x 3 2 + ··· + β 3 ) 2 x 2 x 7 = ( αβ 3 x 4 1 x 6 2 + ··· + β 6 x 2 )( αβ x 2 1 x 3 2 + ··· + β 3 ) x 1 x 2 ( α 3 β x 2 1 x 4 2 + ··· + αβ 4 ) 2 x 8 = ( α 3 β 3 x 6 1 x 8 2 + ··· + αβ 8 )( α 3 β x 2 1 x 4 2 + ··· + αβ 4 ) ( αβ 3 x 4 1 x 6 2 + ··· + β 6 x 2 ) 2 x 2 1 x 2 Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 14 / 23

  31. Singularity confinement Consider a mapping of the plane ( x n − 1 , x n ) �→ ( x n , x n +1 ) given by substitute x n = τ n +1 τ n − 1 x n +1 = α x n + β n . τ 2 x n − 1 x 2 n x 3 = α x 2 + β x 1 x 2 2 x 4 = ( β x 1 x 2 2 + α 2 x 2 + αβ ) x 1 x 2 ( α x 2 + β ) 2 x 5 = ( αβ x 2 1 x 3 2 + ··· + β 3 )( α x 2 + β ) ( β x 1 x 2 2 + α 2 x 2 + αβ ) 2 x 1 x 6 = ( α 3 β x 2 1 x 4 2 + ··· + αβ 4 )( β x 1 x 2 2 + α 2 x 2 + αβ ) ( αβ x 2 1 x 3 2 + ··· + β 3 ) 2 x 2 x 7 = ( αβ 3 x 4 1 x 6 2 + ··· + β 6 x 2 )( αβ x 2 1 x 3 2 + ··· + β 3 ) x 1 x 2 ( α 3 β x 2 1 x 4 2 + ··· + αβ 4 ) 2 x 8 = ( α 3 β 3 x 6 1 x 8 2 + ··· + αβ 8 )( α 3 β x 2 1 x 4 2 + ··· + αβ 4 ) ( αβ 3 x 4 1 x 6 2 + ··· + β 6 x 2 ) 2 x 2 1 x 2 Pavel Galashin (MIT) R -systems San Diego, CA, 01/13/2018 14 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend