r p r r t t t r s

r Pr - PowerPoint PPT Presentation

r Pr r t tt rs 1 1


  1. ❉✉♠❜♦✱ ❏✉♠❜♦✱ ❛♥❞ ❉❡❧✐r✐✉♠✿ P❛r❛❧❧❡❧ ❆❊❆❉ ❢♦r t❤❡ ▲✐❣❤t✇❡✐❣❤t ❈✐r❝✉s ❚✐♠ ❇❡②♥❡ 1 ✱ ❨✉ ▲♦♥❣ ❈❤❡♥ 1 ✱ ❈❤r✐st♦♣❤ ❉♦❜r❛✉♥✐❣ 2 ✱ ❇❛rt ▼❡♥♥✐♥❦ 2 1 ❑❯ ▲❡✉✈❡♥ ✭❇❡❧❣✐✉♠✮ 2 ❘❛❞❜♦✉❞ ❯♥✐✈❡rs✐t② ✭❚❤❡ ◆❡t❤❡r❧❛♥❞s✮ ◆■❙❚ ▲✐❣❤t✇❡✐❣❤t ❈r②♣t♦❣r❛♣❤② ❲♦r❦s❤♦♣ ✷✵✶✾ ◆♦✈❡♠❜❡r ✻✱ ✷✵✶✾ ✶ ✴ ✶✹

  2. ❊♥❝r②♣t✐♦♥ ◆♦ ♦✉ts✐❞❡r ❝❛♥ ❧❡❛r♥ ❛♥②t❤✐♥❣ ❛❜♦✉t ❞❛t❛ ❆✉t❤❡♥t✐❝❛t✐♦♥ ◆♦ ♦✉ts✐❞❡r ❝❛♥ ♠❛♥✐♣✉❧❛t❡ ❞❛t❛ ❆✉t❤❡♥t✐❝❛t❡❞ ❊♥❝r②♣t✐♦♥ → ❇ ❆ ← − − − − − − − − − − − − − − − − − − − − − − − − − − − − ✷ ✴ ✶✹

  3. ❊♥❝r②♣t✐♦♥ ◆♦ ♦✉ts✐❞❡r ❝❛♥ ❧❡❛r♥ ❛♥②t❤✐♥❣ ❛❜♦✉t ❞❛t❛ ❆✉t❤❡♥t✐❝❛t✐♦♥ ◆♦ ♦✉ts✐❞❡r ❝❛♥ ♠❛♥✐♣✉❧❛t❡ ❞❛t❛ ❆✉t❤❡♥t✐❝❛t❡❞ ❊♥❝r②♣t✐♦♥ → ❇ ❆ ← − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ← − − − − − − − − → − ✷ ✴ ✶✹

  4. ❆✉t❤❡♥t✐❝❛t✐♦♥ ◆♦ ♦✉ts✐❞❡r ❝❛♥ ♠❛♥✐♣✉❧❛t❡ ❞❛t❛ ❆✉t❤❡♥t✐❝❛t❡❞ ❊♥❝r②♣t✐♦♥ → ❇ ❆ ← − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ← − − − − − − − − → − ❊♥❝r②♣t✐♦♥ • ◆♦ ♦✉ts✐❞❡r ❝❛♥ ❧❡❛r♥ ❛♥②t❤✐♥❣ ❛❜♦✉t ❞❛t❛ ✷ ✴ ✶✹

  5. ❆✉t❤❡♥t✐❝❛t❡❞ ❊♥❝r②♣t✐♦♥ → ❇ ❆ ← − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ← − − − − − − − − → − ❊♥❝r②♣t✐♦♥ • ◆♦ ♦✉ts✐❞❡r ❝❛♥ ❧❡❛r♥ ❛♥②t❤✐♥❣ ❛❜♦✉t ❞❛t❛ ❆✉t❤❡♥t✐❝❛t✐♦♥ • ◆♦ ♦✉ts✐❞❡r ❝❛♥ ♠❛♥✐♣✉❧❛t❡ ❞❛t❛ ✷ ✴ ✶✹

  6. ◆♦♥❝❡ r❛♥❞♦♠✐③❡s t❤❡ s❝❤❡♠❡ ❆✉t❤❡♥t✐❝❛t❡❞ ❊♥❝r②♣t✐♦♥ k A, M C, T AE N • ❈✐♣❤❡rt❡①t C ❡♥❝r②♣t✐♦♥ ♦❢ ♠❡ss❛❣❡ M • ❚❛❣ T ❛✉t❤❡♥t✐❝❛t❡s ❛ss♦❝✐❛t❡❞ ❞❛t❛ A ❛♥❞ ♠❡ss❛❣❡ M ✸ ✴ ✶✹

  7. ❆✉t❤❡♥t✐❝❛t❡❞ ❊♥❝r②♣t✐♦♥ k A, M C, T AE N • ❈✐♣❤❡rt❡①t C ❡♥❝r②♣t✐♦♥ ♦❢ ♠❡ss❛❣❡ M • ❚❛❣ T ❛✉t❤❡♥t✐❝❛t❡s ❛ss♦❝✐❛t❡❞ ❞❛t❛ A ❛♥❞ ♠❡ss❛❣❡ M • ◆♦♥❝❡ N r❛♥❞♦♠✐③❡s t❤❡ s❝❤❡♠❡ ✸ ✴ ✶✹

  8. ❈♦rr❡❝t♥❡ss✿ ❆✉t❤❡♥t✐❝❛t❡❞ ❉❡❝r②♣t✐♦♥ k � M if T correct A, C, T AD ⊥ otherwise N • ❆✉t❤❡♥t✐❝❛t❡❞ ❞❡❝r②♣t✐♦♥ ♥❡❡❞s t♦ s❛t✐s❢② t❤❛t • ▼❡ss❛❣❡ ❞✐s❝❧♦s❡❞ ✐❢ t❛❣ ✐s ❝♦rr❡❝t • ▼❡ss❛❣❡ ✐s ♥♦t ❧❡❛❦❡❞ ✐❢ t❛❣ ✐s ✐♥❝♦rr❡❝t ✹ ✴ ✶✹

  9. ❈♦rr❡❝t♥❡ss✿ ❆✉t❤❡♥t✐❝❛t❡❞ ❉❡❝r②♣t✐♦♥ k � M if T correct A, C, T AD ⊥ otherwise N • ❆✉t❤❡♥t✐❝❛t❡❞ ❞❡❝r②♣t✐♦♥ ♥❡❡❞s t♦ s❛t✐s❢② t❤❛t • ▼❡ss❛❣❡ ❞✐s❝❧♦s❡❞ ✐❢ t❛❣ ✐s ❝♦rr❡❝t • ▼❡ss❛❣❡ ✐s ♥♦t ❧❡❛❦❡❞ ✐❢ t❛❣ ✐s ✐♥❝♦rr❡❝t ✹ ✴ ✶✹

  10. ❆✉t❤❡♥t✐❝❛t❡❞ ❉❡❝r②♣t✐♦♥ k � M if T correct A, C, T AD ⊥ otherwise N • ❆✉t❤❡♥t✐❝❛t❡❞ ❞❡❝r②♣t✐♦♥ ♥❡❡❞s t♦ s❛t✐s❢② t❤❛t • ▼❡ss❛❣❡ ❞✐s❝❧♦s❡❞ ✐❢ t❛❣ ✐s ❝♦rr❡❝t • ▼❡ss❛❣❡ ✐s ♥♦t ❧❡❛❦❡❞ ✐❢ t❛❣ ✐s ✐♥❝♦rr❡❝t • ❈♦rr❡❝t♥❡ss✿ AD k ( N, A, AE k ( N, A, M )) = M ✹ ✴ ✶✹

  11. ❖✉r ❣♦❛❧✿ ♠✐♥✐♠✐③❡ st❛t❡ s✐③❡ ❛♥❞ ❝♦♠♣❧❡①✐t② ♦❢ ❞❡s✐❣♥ ✇❤✐❧❡ st✐❧❧ ♠❡❡t✐♥❣ ❡①♣❡❝t❡❞ s❡❝✉r✐t② str❡♥❣t❤ ❛♥❞ ❧✐♠✐t ♦♥ ♦♥❧✐♥❡ ❝♦♠♣❧❡①✐t② ❜②t❡s ▲✐❣❤t✇❡✐❣❤t ❆✉t❤❡♥t✐❝❛t❡❞ ❊♥❝r②♣t✐♦♥ s✉✐t❛❜❧❡ ♣r✐♠✐t✐✈❡ ♥♦♥❝❡✲❜❛s❡❞❄ ❘❯P✴▲❘✴✳✳✳❄ ♠❛t❤ ❜❡②♦♥❞ ♣r✐♠✐t✐✈❡ ❤❛r❞✇❛r❡✴s♦❢t✇❛r❡ ♣❛r❛❧❧❡❧✐s♠ ✺ ✴ ✶✹

  12. ▲✐❣❤t✇❡✐❣❤t ❆✉t❤❡♥t✐❝❛t❡❞ ❊♥❝r②♣t✐♦♥ s✉✐t❛❜❧❡ ♣r✐♠✐t✐✈❡ ♥♦♥❝❡✲❜❛s❡❞❄ ❘❯P✴▲❘✴✳✳✳❄ ♠❛t❤ ❜❡②♦♥❞ ♣r✐♠✐t✐✈❡ ❤❛r❞✇❛r❡✴s♦❢t✇❛r❡ ♣❛r❛❧❧❡❧✐s♠ ❖✉r ❣♦❛❧✿ ♠✐♥✐♠✐③❡ st❛t❡ s✐③❡ ❛♥❞ ❝♦♠♣❧❡①✐t② ♦❢ ❞❡s✐❣♥ ✇❤✐❧❡ st✐❧❧ ♠❡❡t✐♥❣ ❡①♣❡❝t❡❞ s❡❝✉r✐t② str❡♥❣t❤ 2 112 ❛♥❞ ❧✐♠✐t ♦♥ ♦♥❧✐♥❡ ❝♦♠♣❧❡①✐t② 2 50 ❜②t❡s ✺ ✴ ✶✹

  13. P❡r♠✉t❛t✐♦♥ ✐s t❤❡ ❜❡st s✉✐t❡❞ ❝❤♦✐❝❡ ❲❤❛t Pr✐♠✐t✐✈❡❄ ❚✇❡❛❦❛❜❧❡ ❇❧♦❝❦ ❈✐♣❤❡r ❇❧♦❝❦ ❈✐♣❤❡r P❡r♠✉t❛t✐♦♥ ✻ ✴ ✶✹

  14. ❲❤❛t Pr✐♠✐t✐✈❡❄ ❚✇❡❛❦❛❜❧❡ ❇❧♦❝❦ ❈✐♣❤❡r ❇❧♦❝❦ ❈✐♣❤❡r P❡r♠✉t❛t✐♦♥ P❡r♠✉t❛t✐♦♥ ✐s t❤❡ ❜❡st s✉✐t❡❞ ❝❤♦✐❝❡ ✻ ✴ ✶✹

  15. ❖✉r ❆♣♣r♦❛❝❤ ✐♥ ✐♥ ✐♥ P❛r❛❧❧❡❧ ❡✈❛❧✉❛t✐♦♥ ♦❢ t❤❡ ♣❡r♠✉t❛t✐♦♥ r❡q✉✐r❡s ♣r♦♣❡r ♠❛s❦✐♥❣ ❊✈❛❧✉❛t✐♥❣ ✐t ✐♥ ❢♦r✇❛r❞ ❞✐r❡❝t✐♦♥ ♦♥❧② r❡q✉✐r❡s ♣r♦♣❡r ♠♦❞❡ ♦❢ ✉s❡ ●♦❛❧✿ ♠✐♥✐♠✐③❡ ♣❡r♠✉t❛t✐♦♥ s✐③❡ ♦✉t ♦✉t ♦✉t ❲❤❛t ▼♦❞❡❄ σ 0 Z 0 σ 1 Z 1 σ 2 Z 2 σ 0 z 0 σ 1 z 1 σ 2 z 2 ∀ i : τ i ≤ r pad pad trunc pad pad trunc pad pad trunc trunc τ 0 trunc τ 1 trunc τ 2 ❊st❛❜❧✐s❤❡❞ ❆♣♣r♦❛❝❤ … • ❑❡②❡❞ ❞✉♣❧❡①✴s♣♦♥❣❡ r 0 r 0 f f f P P P … ❬❇❉P❱✶✶✱▼❘❱✶✺✱❉▼❱✶✼❪ c 0 • ■♥❤❡r❡♥t❧② s❡q✉❡♥t✐❛❧ c K initialize duplexing duplexing duplexing ✼ ✴ ✶✹

  16. ❲❤❛t ▼♦❞❡❄ σ 0 Z 0 σ 1 Z 1 σ 2 Z 2 σ 0 z 0 σ 1 z 1 σ 2 z 2 ∀ i : τ i ≤ r pad pad trunc pad pad trunc pad pad trunc trunc τ 0 trunc τ 1 trunc τ 2 ❊st❛❜❧✐s❤❡❞ ❆♣♣r♦❛❝❤ … • ❑❡②❡❞ ❞✉♣❧❡①✴s♣♦♥❣❡ r 0 r 0 f f f P P P … ❬❇❉P❱✶✶✱▼❘❱✶✺✱❉▼❱✶✼❪ c 0 • ■♥❤❡r❡♥t❧② s❡q✉❡♥t✐❛❧ c K initialize duplexing duplexing duplexing ❖✉r ❆♣♣r♦❛❝❤ ✐♥ 1 ✐♥ 2 ✐♥ 3 • P❛r❛❧❧❡❧ ❡✈❛❧✉❛t✐♦♥ ♦❢ t❤❡ ♣❡r♠✉t❛t✐♦♥ → r❡q✉✐r❡s ♣r♦♣❡r ♠❛s❦✐♥❣ mask 1 mask 2 mask 3 • ❊✈❛❧✉❛t✐♥❣ ✐t ✐♥ ❢♦r✇❛r❞ ❞✐r❡❝t✐♦♥ ♦♥❧② P P P → r❡q✉✐r❡s ♣r♦♣❡r ♠♦❞❡ ♦❢ ✉s❡ • ●♦❛❧✿ ♠✐♥✐♠✐③❡ ♣❡r♠✉t❛t✐♦♥ s✐③❡ ♦✉t 1 ♦✉t 2 ♦✉t 3 ✼ ✴ ✶✹

  17. ❋❡❛t✉r❡s ❈♦♥st❛♥t✲t✐♠❡ ❙✐♠♣❧❡ t♦ ✐♠♣❧❡♠❡♥t ▼♦r❡ ❡✣❝✐❡♥t t❤❛♥ ❛❧t❡r♥❛t✐✈❡s ❲❤❛t ▼❛s❦❄ ❙✐♠♣❧✐✜❡❞ ❱❡rs✐♦♥ ♦❢ ▼❊▼ ❬●❏▼◆✶✻❪ M • ϕ 1 ✐s ✜①❡❞ ▲❋❙❘✱ ϕ 2 = ϕ 1 ⊕ id • mask a,b K = ϕ b 2 ◦ ϕ a 1 ◦ P ( K � 0 n − k ) mask a,b K P C ✽ ✴ ✶✹

  18. ❲❤❛t ▼❛s❦❄ ❙✐♠♣❧✐✜❡❞ ❱❡rs✐♦♥ ♦❢ ▼❊▼ ❬●❏▼◆✶✻❪ M • ϕ 1 ✐s ✜①❡❞ ▲❋❙❘✱ ϕ 2 = ϕ 1 ⊕ id • mask a,b K = ϕ b 2 ◦ ϕ a 1 ◦ P ( K � 0 n − k ) mask a,b K P ❋❡❛t✉r❡s • ❈♦♥st❛♥t✲t✐♠❡ • ❙✐♠♣❧❡ t♦ ✐♠♣❧❡♠❡♥t C • ▼♦r❡ ❡✣❝✐❡♥t t❤❛♥ ❛❧t❡r♥❛t✐✈❡s ✽ ✴ ✶✹

Recommend


More recommend