quantum processes in josephson junctions weak links j a
play

Quantum Processes in Josephson Junctions & Weak Links J. A. - PowerPoint PPT Presentation

CMS Colloquium, Los Alamos National Laboratory, December 9, 2015 Quantum Processes in Josephson Junctions & Weak Links J. A. Sauls Northwestern University +i 2 e


  1. CMS Colloquium, Los Alamos National Laboratory, December 9, 2015 Quantum Processes in Josephson Junctions & Weak Links J. A. Sauls Northwestern University +i φ 2 ∆ e ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� z ��������� ��������� ��������� ��������� +i φ 1 ��������� ��������� ��������� ��������� ∆ 2a e 2ξ ∆ Research supported by NSF grant DMR-1106315. ◮ Erhai Zhao, George Mason University Tomas L¨ ofwander, Chalmers University 1 / 26

  2. Preface on Dirac Materials Dirac materials • Materials whose low energy electronic properties are a direct consequence of Dirac spectrum E = vk • How do we “design” Dirac Materials? • Can be a collective state: 3He superfmuid, heavy fermion, organic, high T c superconductors • Band structure efgect – graphene, T opological states T. Wehling, A Black-Schafger and A. V. Balatsky, Dirac Materials, Adv Phys 2014 2 / 26

  3. Dirac Fermions & Zero Energy Bound States ◮ Dirac Fermion coupled to a Scalar Bose Field h ∂ t | ψ � = ( − i ¯ hc � α · ∇ + β g Φ ) | ψ � i ¯ � 0 � � 1 � � σ 0 � α = β = | ψ � = col ( ψ 1 , ψ 2 , ψ 3 , ψ 4 ) � σ 0 0 − 1 3 / 26

  4. Dirac Fermions & Zero Energy Bound States ◮ Dirac Fermion coupled to a Scalar Bose Field h ∂ t | ψ � = ( − i ¯ hc � α · ∇ + β g Φ ) | ψ � i ¯ � 0 � � 1 � � σ 0 � α = β = | ψ � = col ( ψ 1 , ψ 2 , ψ 3 , ψ 4 ) � σ 0 0 − 1 � ◮ Broken Symmetry State: Φ = Φ 0 � Mass : Mc 2 = g Φ 0 � E ± = ± c 2 | p | 2 +( Mc 2 ) 2 3 / 26

  5. Dirac Fermions & Zero Energy Bound States ◮ Dirac Fermion coupled to a Scalar Bose Field h ∂ t | ψ � = ( − i ¯ hc � α · ∇ + β g Φ ) | ψ � i ¯ � 0 � � 1 � � σ 0 � α = β = | ψ � = col ( ψ 1 , ψ 2 , ψ 3 , ψ 4 ) � σ 0 0 − 1 � ◮ Broken Symmetry State: Φ = Φ 0 � Mass : Mc 2 = g Φ 0 � E ± = ± c 2 | p | 2 +( Mc 2 ) 2 ◮ Degenerate Vacuum States: Φ ( x → ± ∞ ) = ∓ Φ 0 : ◮ “Zero Mode” � Fermion with E = 0 confined on the the Domain Wall : “Topologically Protected” Zero Mode R. Jackiw and C. Rebbi, Phys. Rev. D 1976 3 / 26

  6. Nambu-Dirac Fermions in Superconductors ◮ Bogoliubov-Nambu Equations - particle-hole coherence : � �� u � �� u 2 m ∇ 2 − µ h 2 � � � u � − ¯ 0 ∆ 0 = ε + 2 m ∇ 2 + µ h 2 ¯ v ∆ † v v 0 0 4 / 26

  7. Nambu-Dirac Fermions in Superconductors ◮ Bogoliubov-Nambu Equations - particle-hole coherence : � �� u � �� u 2 m ∇ 2 − µ h 2 � � � u � − ¯ 0 ∆ 0 = ε + 2 m ∇ 2 + µ h 2 ¯ v ∆ † v v 0 0 hv f / ∆ ≤ λ : � u = U p e i p · r / ¯ h ◮ Separation of scales: ¯ h / p f ≪ ¯ h p f / p y v p x p x λ ◮ Nambu-Dirac Spinors coupled to the (Bosonic) Cooper-Pair Field � U � � �� U � � U � ∆ ( p , r ) 0 h v p · ∇ r + = ε ¯ ∆ † ( p , r ) − V V V 0 4 / 26

  8. Nambu-Dirac Fermions in Superconductors ◮ Bogoliubov-Nambu Equations - particle-hole coherence : � �� u � �� u 2 m ∇ 2 − µ h 2 � � � u � − ¯ 0 ∆ 0 = ε + 2 m ∇ 2 + µ h 2 ¯ v ∆ † v v 0 0 hv f / ∆ ≤ λ : � u = U p e i p · r / ¯ h ◮ Separation of scales: ¯ h / p f ≪ ¯ h p f / p y v p x p x λ ◮ Nambu-Dirac Spinors coupled to the (Bosonic) Cooper-Pair Field � U � � �� U � � U � ∆ ( p , r ) 0 h v p · ∇ r + = ε ¯ ∆ † ( p , r ) − V V V 0 ◮ Zero Modes if ∆ ( x = − ∞ ) = − ∆ ( x = + ∞ ) along x = ˆ v p · r 4 / 26

  9. Electron-Hole Coherence & Zero-Energy Interface Bound States ◮ Andreev’s Equation for Coherent Electron-Hole States � U � � �� U � � U � ∆ ( p , r ) 0 h v p · ∇ r + = ε ¯ ∆ † ( p , r ) − V 0 V V p 2 p 2 ◮ ∆ ( p ) = ∆ ( ˆ x − ˆ y ) p y − p − p p + + x − [ 110 ] reflection: 5 / 26

  10. Electron-Hole Coherence & Zero-Energy Interface Bound States ◮ Andreev’s Equation for Coherent Electron-Hole States � U � � �� U � � U � ∆ ( p , r ) 0 h v p · ∇ r + = ε ¯ ∆ † ( p , r ) − V 0 V V p 2 p 2 ◮ ∆ ( p ) = ∆ ( ˆ x − ˆ y ) p y − ◮ p ◮ Electron & Hole Bound State: − p p + � 1 � + x � e − 2 | ∆ ( p ) || x | / ¯ hv f | ψ � ∼ | ∆ ( p ) | i 5.0 − N( p,x=0 ; ε ) 4.0 [ 110 ] reflection: 3.0 2.0 1.0 0.0 -1.0 -0.5 0.0 0.5 1.0 ε/2πΤ c ◮ Tunneling into Surface States of HTC Superconductors , PRL 79:281–284 (1997), M. Fogelstr¨ om, D. Rainer, & J. A. Sauls 5 / 26

  11. Josephson Tunneling in Superconductors ◮ B. Josephson, Phys. Lett. 1, 251 (1962). ◮ V. Ambegaokar & A. Baratoff, PRL (1963). H = H 1 + H 2 + H tH 6 / 26

  12. Josephson Tunneling in Superconductors ◮ B. Josephson, Phys. Lett. 1, 251 (1962). ◮ V. Ambegaokar & A. Baratoff, PRL (1963). H = H 1 + H 2 + H tH � � H 1 = ∑ ξ k σ c † ∆ k c † k σ c † − k − σ + ∆ ∗ k c † k σ c k σ + 1 2 ∑ − k − σ c k σ k σ k σ � � H 2 = ∑ ξ p σ a † ∆ p a † p σ a † − p − σ + ∆ ∗ p a † p σ a p σ + 1 2 ∑ − p − σ a p σ p σ p σ � � H tH = ∑ t p , k a † p σ c k σ + t ∗ p , k c † k σ a p σ p , k , σ 6 / 26

  13. Josephson Tunneling in Superconductors ◮ B. Josephson, Phys. Lett. 1, 251 (1962). ◮ V. Ambegaokar & A. Baratoff, PRL (1963). H = H 1 + H 2 + H tH � � H 1 = ∑ ξ k σ c † ∆ k c † k σ c † − k − σ + ∆ ∗ k c † k σ c k σ + 1 2 ∑ − k − σ c k σ k σ k σ � � H 2 = ∑ ξ p σ a † ∆ p a † p σ a † − p − σ + ∆ ∗ p a † p σ a p σ + 1 2 ∑ − p − σ a p σ p σ p σ � � H tH = ∑ t p , k a † p σ c k σ + t ∗ p , k c † k σ a p σ p , k , σ N 2 ( t ) � = 2 e Im ∑ t p , k � a † ◮ � I � = e � ˙ p σ ( t ) c k σ ( t ) � p , k , σ 6 / 26

  14. Josephson Tunneling in Superconductors ◮ B. Josephson, Phys. Lett. 1, 251 (1962). ◮ V. Ambegaokar & A. Baratoff, PRL (1963). H = H 1 + H 2 + H tH � � H 1 = ∑ ξ k σ c † ∆ k c † k σ c † − k − σ + ∆ ∗ k c † k σ c k σ + 1 2 ∑ − k − σ c k σ k σ k σ � � H 2 = ∑ ξ p σ a † ∆ p a † p σ a † − p − σ + ∆ ∗ p a † p σ a p σ + 1 2 ∑ − p − σ a p σ p σ p σ � � H tH = ∑ t p , k a † p σ c k σ + t ∗ p , k c † k σ a p σ p , k , σ N 2 ( t ) � = 2 e Im ∑ t p , k � a † ◮ � I � = e � ˙ p σ ( t ) c k σ ( t ) � p , k , σ ◮ � I � = I c ( T ) sin ( ∆ φ ) 6 / 26

  15. Josephson Tunneling in Superconductors ◮ B. Josephson, Phys. Lett. 1, 251 (1962). ◮ V. Ambegaokar & A. Baratoff, PRL (1963). H = H 1 + H 2 + H tH � � H 1 = ∑ ξ k σ c † ∆ k c † k σ c † − k − σ + ∆ ∗ k c † k σ c k σ + 1 2 ∑ − k − σ c k σ k σ k σ � � H 2 = ∑ ξ p σ a † ∆ p a † p σ a † − p − σ + ∆ ∗ p a † p σ a p σ + 1 2 ∑ − p − σ a p σ p σ p σ � � H tH = ∑ t p , k a † p σ c k σ + t ∗ p , k c † k σ a p σ p , k , σ N 2 ( t ) � = 2 e Im ∑ t p , k � a † ◮ � I � = e � ˙ p σ ( t ) c k σ ( t ) � p , k , σ � ∆ � � � π 2 N ( 0 ) 2 |�| t | 2 � FS ◮ � I � = I c ( T ) sin ( ∆ φ ) I c ( T ) = 2 e × × ∆ tanh 2 T ) � �� � ∝ D tH ≪ 1 Transmission Amplitude 6 / 26

  16. a.c. Josephson Effects ◮ Supercurrent: I s = I c ( T ) sin ( φ t ) 7 / 26

  17. a.c. Josephson Effects ◮ Supercurrent: I s = I c ( T ) sin ( φ t ) ◮ a.c. Josephson Equation: φ t = 2 e h V t 7 / 26

  18. a.c. Josephson Effects ◮ Supercurrent: I s = I c ( T ) sin ( φ t ) ◮ a.c. Josephson Equation: φ t = 2 e h V t � � σ 0 + σ 1 cos ( φ t ) ◮ Dissipative Current: I Ohmic = V ◮ Phase-sensitive dissipation � B. Josephson, Adv. Phys. (1965). 7 / 26

  19. a.c. Josephson Effects ◮ Supercurrent: I s = I c ( T ) sin ( φ t ) ◮ a.c. Josephson Equation: φ t = 2 e h V t � � σ 0 + σ 1 cos ( φ t ) ◮ Dissipative Current: I Ohmic = V ◮ Phase-sensitive dissipation � B. Josephson, Adv. Phys. (1965). ◮ What is the origin of phase-dependent dissipation? 7 / 26

  20. Heat Transport through a Phase-Biased Josephson Junction Linear Response to a Thermal Bias ◮ Maki & Griffin, PRL (1965); Guttman et al. PRB 57, 2717 (1998) 8 / 26

  21. Heat Transport through a Phase-Biased Josephson Junction Linear Response to a Thermal Bias ◮ Maki & Griffin, PRL (1965); Guttman et al. PRB 57, 2717 (1998) Heat Current: Tunneling Hamiltonian � � � � ◮ I Q = − i ∑ ξ p σ a † p σ c k σ − ∆ p a † − h . c . t p , k p σ c − k − σ p , k , σ 8 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend